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Abstract— As robots increasingly share spaces with people,
it becomes important for them to behave according to our
social norms. In this paper, we explore the problem of finding
socially acceptable locations for a robot to wait for a shared
elevator by learning from expert annotations. Access to relevant,
unlabeled data is however scarce in this setting and annotations
expensive to gather, as they require explicit knowledge about
the social norms, the robot, and the service it carries out. We
tackle this low-data regime as follows. First, we use Procedural
Content Generation to generate plausible waiting scenes to be
annotated. Second, we leverage available sociological studies
and operationalize relevant social norms as feature maps. We
train a variety of models with only 125 procedurally-generated
expert-annotated scenes, testing the impact of the proposed
feature maps. In our ablation study, the feature maps help
the models’ performance and their generalization capabilities
to non-synthetic, real scenes. We inspect the decisions taken by
the best models, probing their strengths and weaknesses, and
identifying general issues and discussing potential solutions.

I. INTRODUCTION

Robots are poised to become increasingly present in our
day-to-day life, co-inhabiting with humans while providing
services. Regardless of their level of autonomy or the nature
of their embodiment, robots are perceived as social agents
[1] and expected to comply with social norms [2]. Interacting
with people can be a secondary task for such robots; yet their
behaviors greatly impact people’s perception of and attitude
towards them [3].

Our work builds on the ongoing development of an indoor
service robot capable of sharing the use of elevators with
bystanders. Elevators are everywhere, and we want robots to
access the vertical mobility they provide while minimizing
dedicated infrastructure and discomfort of human passengers.
With ethnographic studies aimed at understanding how peo-
ple routinely wait for and board elevators, we investigated the
requirements for socially acceptable navigation behaviors in
office buildings [4] and designed non-verbal behaviors aimed
at reducing disruptive behaviors over repeated encounters
for a robot with limited social features and expressiveness
[5]. In a Wizard-of-Oz experiment, we studied the use of
waiting positions that adapt to the number of people and the
available space by mimicking social conventions like e.g.,
proxemics [6] and queuing principles [7], as opposed to a
fixed position next to the elevator’s door. Although we found
that a fixed position has advantages in terms of predictability,
consistency of behavior, and ease of implementation, a fixed
position may not always be available in practice or may not
satisfy other technical requirements of the service carried
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out by the robot. In this work, we therefore automate the
selection of socially acceptable waiting positions for a robot
in a shared elevator scenario.

Enumerating the social norms and technical requirements
we want our robot to follow, we realized (a) how the
intersection or average of them would often produce no
acceptable waiting areas and (b) how people using elevators
will non-trivially pay less attention or fully ignore certain
norms when the situation at hand requires it. We therefore
deemed necessary to train a model that, given a represen-
tation of the robot’s surroundings, would classify positions
as socially acceptable or not. As for other practical Human-
Robot Interaction (HRI) problems, annotated data is scarce,
and labeled samples are costly to gather because of the level
of expertise required from the annotator. We attenuate the
data scarcity of this setup in two ways. First, we rely on
a Procedural Content Generation (PCG) technique to create
plausible scenes with people waiting for the elevator. These
scenes are then labeled by experts with socially acceptable
robot waiting positions for two target missions1, based on the
robot’s level of urgency: Priority, when the robot seeks to
enter the elevator as fast as possible (even before bystanders),
and Yielding, when the robot willingly forfeits its priority.
Second, we operationalize the prior knowledge from the
available literature in a set of feature maps applicable to
any configuration of the space shared by one or multiple
bystanders, the robot, and the elevator. As an example,
Fig. 1j shows how one of our maps, the Avoid transactional
space map, disincentivizes the robot from waiting in the
transactional space created by the human passengers and
their focus of attention, i.e. the elevator.

By training a variety of models, we aim at answering the
following research questions:

RQ1: is learning from data necessary? and if that is the
case, can a satisfactory classifier (i.e. achieving a
Jaccard index of .4) be trained in this low-data
regime, e.g., with less than 150 annotated scenes?,

RQ2: do the proposed feature maps, encoding the prior
sociological knowledge, help improve the classi-
fier’s performance?, and

RQ3: can the trained models generalize to unseen real
scenes, considering that the totality of the training
data is procedurally generated?

Our evaluation confirms the impact of the proposed feature

1Annotated dataset available at https://europe.
naverlabs.com/research/publications/
robots-waiting-for-the-elevator/
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Fig. 1: Top-view of a procedurally-generated elevator waiting scene with 2 groups of 2 people each and a robot (a), along
with the proposed feature maps applied on the area surrounding the robot: (b) is the occupancy map, (c-e) are Basic feature
maps (Elevator location, Commands location, People detection), while (f-n) are Norms feature maps (Proxemics, Avoid
standing behind people, Avoid blocking the door, Avoid blocking the commands, Avoid transactional space, Communicative
space, As far as furthest person, Efficient boarding, Visibility cone).

maps on the models’ performance and their generalization
capabilities. The prior knowledge embedded in the maps
overcomes the data scarcity for the Yielding mission, while,
for the more complex Priority mission, the models show
promising but not-deployment ready results. Going beyond
the performance metrics, we have an expert annotator inspect
models’ decisions to further discuss strengths and weak-
nesses of the proposed pipeline.

II. RELATED WORK

Social robot navigation: Enabling robots to navigate
among humans is a long-standing research problem [8].
While early approaches solely focused on avoiding colli-
sions with bystanders [9], subsequent methods encoded the
presence of nearby humans in their decisions, either by
forecasting human trajectories while planning [10], [11],
[12] or by modeling crowd interaction with attractive and
repulsive force fields [13].

With the goal of injecting prior knowledge about social
norms, Kothari et al. [14] proposed a hybrid approach to
trajectory forecasting using hand-coded social behaviors,
such as collision avoidance and leader following, in a Dis-
crete Choice Model. This approach is reminiscent of the
pioneering work of Kirby [15], where paths are computed
on a cost map that combines different task- and interaction-
specific factors.

In this work, we address the related but distinct problem of
identifying socially acceptable waiting positions for robots.
Decoupling goal selection from navigation allows to (a) use
the selected waiting positions with any social navigation
pipeline, and to (b) prevent waiting-specific requirements
(e.g., the need to see the inside of the elevator’s car) from
over-constraining navigation towards the chosen spot.

Social aspects of robot waiting: Research on the social
norms of waiting for robots as opposed to navigating is
quite limited [16], [17], [18], [19]. Tackling the problem of
searching the best pose for a robot to join a conversation, the

approach of [20] operationalises the concepts of proxemics
[6] and F-formations [21] with two losses, and performs an
optimization procedure on their weighted average. We here
operationalize a larger number of social norms and technical
requirements (as shown in Fig. 1) which often do not yield
acceptable poses when the constraint to satisfy all of them
or their average is imposed.

There are of course many possible approaches to getting a
robot to successfully board an elevator, including using vocal
interactions to ask people to move out of the way [22]. This
may be acceptable in certain scenarios where interactions
with the robots are episodic (e.g., hotels), and less so in
others (e.g., office spaces). With this in mind, we focus on
the waiting position as a non-disruptive social cue to convey
the robot’s intention to board the elevator. Since waiting
positions have a strong communicative function [7], [23],
selecting a good waiting position is therefore crucial.

III. METHOD

We formalize the problem of robots finding a socially
acceptable waiting position in a shared elevator scenario as
follows. Given (a) static information about the environment
the robot operates in, i.e. an occupancy map M , and the
location of the elevator E and its commands Ce, (b) the
pose pp of people p ∈ Pv detectable by robot-mounted
sensors, (c) the robot’s estimated pose pr, and (d) the robot’s
target mission T , the robot classifies waiting positions in its
proximity as acceptable or not for that mission. We consider
the sensory information about the robot’s surroundings S =
⟨M,E,Ce, pr, pp∀p ∈ Pv⟩ as available to the robot at all
times. However, we constrain S to what is generally needed
to operate a robot in a human-inhabited environment. For
example, we assume the robot to be able to reliably detect
the people’s pose pp (position and main facing orientation)
through robot-mounted vision systems instead of, for exam-
ple, relying on connected ceiling-mounted cameras.



Following from [5], we consider two target missions,
Priority and Yielding. As explained in Section III-B, different
social norms are more or less relevant depending on the
robot’s urgency, and we expect the feature maps to ease
the learning of both missions. While raw video data of
people navigating socially is available on the web, few an-
notated datasets contain elevator scenes [24]. Consequently,
an annotated dataset with socially acceptable robot waiting
positions is not available. We therefore procedurally generate
plausible elevator waiting scenes within a simple simulator,
providing us the unlabeled data. We then design feature
maps, combining the environmental information available to
the robot with social norms observed in previous studies,
injecting prior knowledge in the learning process. Given
procedurally generated scenes, annotated by an expert with
socially acceptable waiting locations according to the robot’s
target mission, we learn a classifier for these acceptable
locations given, as input, a set of feature maps including (a)
information about the environment mentioned above (Basic
feature maps) and (b) feature maps about social norms
and service requirements (Norms feature maps). The expert
annotators in our case are researchers with sociological
expertise, but this task could be performed as part of a service
design pipeline by someone with knowledge of the desired
robot behaviors for a specific deployment.

A. Procedural generation of waiting scenes

To overcome the lack of unlabeled data, we take a page
from the field of PCG, in which algorithms are used to
generate content based on a mix of human-designed rules and
assets, and computer-generated randomness [25]. Historically
developed within the video game industry, PCG has recently
been used as a tool to generate and augment data for training
ML models [26].

Inspired by work on PCG of crowds [27], [28], we
develop a generator of elevator waiting crowds, based on the
rejection sampling technique [29]. With rejection sampling,
new entities (in our case, people waiting the elevator) are
iteratively sampled from a provided sampling function S and
evaluated against a set R of handcrafted rejection functions.
If an entity e is rejected by any R ∈ R, it is discarded
and a new entity is sampled, up to a provided iteration
limit. Otherwise, the accepted entity is added to the scene,
often triggering the addition of new rejection functions to R.
Newly sampled entities will therefore need to respect these
additional rejection functions as well.

Provided with a map M with an elevator E, our rejection
sampling method generates a desired number of groups g of
people by sampling from a group sampling function Sg and
a person in a group sampling function Sp. While the scene
is empty, the rejection functions only take care that people
are not spawned inside occupied areas of the map. When
groups are being populated, rejection functions are added,
avoiding people from spawning (a) too close to each other,
(b) and further than a hand-tuned distance from their group.
Once a group is fully populated, more rejection functions are
added, avoiding further groups from spawning (a) too close

to already generated groups and (b) in the space between
the elevator and previous groups. Fig. 2 shows a top-view
comparison of generated scenes in two different maps and
with different amounts of people, and two scenes extracted
from video recordings for comparison.

It is worth mentioning that the PCG approach and the
learning pipeline are disjoint: a generated scene is solely
used to construct the robot’s sensory information S. This
is a deliberate choice, as we want the pipeline to work
outside of our PCG simulator. Furthermore, we consider
visibility constraints and omit people hidden behind walls or
behind other people when populating Pv from the set of all
simulated people P (as shown in Fig. 1e, where one person
is occluded and therefore not considered when computing
the feature map).

B. From social norms to feature maps

In previous research, we examined video data to under-
stand the specific practices of waiting for, entering, and
exiting an elevator [4]. Based on those findings, we oper-
ationalize a number of norms into feature maps which give
the robot the prior knowledge needed to select acceptable
waiting positions. It is worth noting that, while some of the
proposed maps are specific to the elevator scenario we tackle,
most maps can be reused in other goal selection problems.
The Proxemics map is a clear candidate and, less trivially, the
Avoid blocking the door map could be repurposed to other
threshold crossing situations, like e.g., the shared use of a
badge access gate.

We define a feature map as the application of a function
F : R2 → [0, 1] to the space in front of the robot, scoring it
based on a subset of the sensory information S. In practice,
the selected space is discretized in a n×n grid, and each cell
receives a score from F , with scores closer to 1 being more
desirable. In addition to the Occupancy map (fundamentally
replicating the static layer of the ROS navigation stack),
we design 12 feature maps, separated in two groups: three
Basic and nine Norms feature maps. Each feature map is
designed to represent only one aspect of the task at hand,
allowing learning methods like Decision Trees to retain
interpretability.

Basic maps replicate the information contained in one
element of S with no processing, acting as the baseline input
for the robot to perform the task. Norms maps encode instead
the prior knowledge about the task, often using a subset of S.
Fig. 1 depicts each feature map applied to a waiting scene.
The three Basic maps include

1) Elevator location: scores at 0 the space occupied by
the elevator E, providing information about its size
and location;

2) Commands location: scores at 0 the location of the
elevator’s commands Ce;

3) People detection: scores at 0 the location of the
detected people Pv .

The Norms maps were designed following an iterative
process, balancing fidelity towards the target norm and
complexity of computation. Norms maps make extensive
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Fig. 2: Annotated scenes from the training set generated with our PCG technique (a-d), along two scenes from the Real
Elevator set (e-f), manually recreated from video recordings. The elevator is depicted in green, its commands in red, and the
robot as a gray square with a cyan dot. The circles mark the distance in meters from the elevator’s door, helping annotators
to better judge distances. The highlighted areas are the annotations given for the Yielding (Y) and Priority (P) missions.

use of Bivariate Normal Distributions N (·|µ,Σ), Euclidean
distance (denoted with | · |2), and logistic functions λ±

ϕ,x0
(x),

defined as

λ±
ϕ,x0

(x) =
1

1 + e±ϕ(x0−x)
, (1)

with x0 being the midpoint of the function (so that
λ±
ϕ,x0

(x0) = 0.5) and ϕ dictating the steepness of curve. The
λ+
ϕ,x0

(·) goes from 0 to 1 as x grows; vice versa for λ−
ϕ,x0

(·).
The maps and their hyper-parameters were manually tuned
as part of the design process. The nine Norms maps are
operationalized as follows.
Proxemics: based on the concept of proxemics [6], [30],
it disincentivizes the close proximity of people in Pv , pe-
nalizing each person’s sides less than their front and back.
This is achieved by placing an appropriately oriented Normal
distribution N (·|pp,Σ) on each person p, with the size of
the discouraged area that can be adjusted by varying Σ. The
score for location x is computed as

F (x) = 1−min
(
1,

∑
p∈Pv

N (x|pp,Σ)
)
, (2)

ensuring the score to be ∈ [0, 1].
Avoid standing behind people: similarly to the Proxemics
map, it discourages the robot from waiting behind people,
as it can cause discomfort. The radius of the area to be
avoided is a hyper-parameter, and the scoring follows a
scheme similar to (2).
Avoid blocking the door: this map scores low the entrance
of the elevator E, discouraging the robot from potentially
blocking people exiting the elevator. It is worth mentioning
how people do not always respect this norm and rely on their
ability to quickly side-step or step back – something that is
however challenging for certain robots. Mathematically, we
have

F (x) = min(0, 1−N (x|Ep,Σ)), (3)

where the size of the discouraged area varies with Σ.
Avoid blocking the commands: this map scores low areas
close to the elevator’s commands Ce, operationalizing the
fact that the robot should not block human passengers from
calling the elevator. The scoring follows the same scheme
of (3).

As far as furthest person: As a service principle in the
Yielding scenario, we want the robot to yield to all the people
in the elevator’s vicinity, as to mimic a queuing principle. The
map therefore disincentivizes the space between the elevator
E and the person standing the furthest from it pfar. The score
for position x is computed as

F (x) = λ+
ϕ,|pE−pfar|2(|pE − x|2). (4)

Avoid transactional space: Kendon [21] defines the space in
front of one person engaged in a social context or activity as
a transactional segment, over which the person endeavors to
maintain some degree of jurisdiction or control. The location
and orientation of a transactional segment are framed by the
posture and orientation of the body in relation to the social
context and activity. When the activity in question involves
groups of people, transactional segments can overlap to
create a transactional space. Maintaining this space requires
cooperation (or negotiation), and previous work implemented
it for robotics tasks [17], [18].

When a robot intends to yield to people entering an
elevator, it is beneficial to avoid any emergent transactional
space. The Avoid transactional space map therefore scores
low the transactional space between the detected people Pv

and the elevator E. We operationalize this concept by placing
Normal distributions between each person p ∈ Pv and the
elevator E’s door, having the score for position x as

F (x) = 1−min
(
1,

∑
p∈Pv

N (x|µE,p,Σ)
)
, (5)

where µE,p is the midpoint between the elevator E and
person p.
Communicative space: In Priority scenarios, the edge of
transactional spaces can be used to position the robot strate-
gically to indicate its intent and perform, for example, step-in
gestures when the elevator doors open [5]. We operationalize
this concept by scoring locations based on their distance from
the border of a convex hull built on the people Pv and the
elevator E door. The score for position x is computed as

F (x) = λ−
ϕ,d∗(dx,hull), (6)

where dx,hull is the Euclidean distance between x and its
closest point on the convex hull, and d∗ is a suitably tuned
distance, controlling how much area is set to 1.



Efficient boarding: this map incentivizes areas close to the
elevator E, encoding the idea that the robot should not wait
too far away from the elevator, as that would make the
boarding slower and therefore deteriorate service’s quality.
Similarly to (4), the score for position x is

F (x) = λ−
ϕ,d∗(|pE − x|2), (7)

with d∗ being a suitable distance from the elevator.
Visibility cone: this map incentivizes areas where the robot,
once stopped, can see the interior of the elevator E. Similarly
to the Efficient boarding map, the Visibility cone map does
not directly encode a social norm but rather a technical
dependency that can however impact bystanders, as the
quicker the robot can see that the elevator’s car is full,
the quicker it will abort mission and avoid slowing down
people. A technique akin to ray-tracing is used to compute
the portion of visible elevator interior from a position x as
score.

IV. EXPERIMENTS

To answer our research questions, we present the results
from training a suite of classifiers and performing an ablation
study to discern the efficacy of the proposed Norms maps in
encoding prior knowledge.

A. Datasets

We generate a training dataset of 125 waiting scenes.
Aside from the variability provided by the proposed PCG
technique, the training dataset used 3 different locations (2
of which shown in Fig. 2), a number of groups of people
varying from 1 to 4, with a maximum of 6 people in the
scene at a time. We also vary the dimensions of the elevators,
along with the relative position of the commands.

As for test datasets, we have three sets. First, we have
a PCG set of 15 scenes named the In-Distribution (ID)
set, containing scenes generated with the same PCG hyper-
parameters of the training set. Second, we have a pro-
cedurally generated set of 67 scenes named the Out-of-
Distribution (OOD) set. These scenes have a larger num-
ber of people waiting and different elevator’s sizes and
locations, helping us test the classifiers’ out-of-distribution
performance. Third, we have the Real Elevator set, with
13 scenes extracted from 16 hours video recordings of an
elevator lobby (with 1 to 4 people per scene) and manually
recreated in simulation, allowing the tackling of RQ3.

Two authors2 – a sociologist and an interaction designer,
familiar with the service, the robot, and the social norms
– annotated waiting areas on each scene, given one of the
two target missions with the open-source Computer Vision
Annotation Tool (CVAT) [31]. Fig. 2 shows examples of
these annotated areas. Annotations are agnostic towards the
current robot’s location, meaning that the selected areas are
socially acceptable regardless of the pose from where the
robot will compute them. In other words, the annotators

2The annotators were purposely excluded from the development of the
method to avoid unwanted bias, but were informed that their annotations
would help automate the robot’s waiting behavior.

have access to the top-down scene, where all people are
detected. The annotations present a high class imbalance,
as the acceptable areas represent a small portion of the
overall n×n grid. The average ratio of negative over positive
samples is of 200 and 300 for target missions Yielding and
Priority respectively. The experts annotated a subset of the
scenes, with an overlap of 50 scenes and a Cohen’s κ of
0.53, indicating moderate agreement. Each annotation (one
scene, one target mission) took the experts an average of two
minutes to produce.

B. Performance scores

For each model and scene in the test datasets, we compute
the Jaccard index J (S,A), also known as Intersection over
Union. The Jaccard index is a commonly used metric for
evaluating segmentation performance, ranging from 0 (no
overlap between the model’s prediction and the ground truth)
to 1 (perfect overlap). Fig. 4 presents a number of models’
decisions, along with their J (S,A).

C. Trained classifiers

We want a classifier that takes as input the robot’s sensory
information S in the form of the proposed feature maps
F (covering a 5 by 5 meters area in front of the robot,
discretized with a n × n grid) and classifies them as being
acceptable waiting position or not. We set n to 64, as a trade-
off between decision resolution and training feasibility. We
implement two categories of models, Grid-based and Cell-
based models, differing in how they use the feature maps
as input. Each model was trained in two fashions: with
the Occupancy map and Basic maps as input (B) and with
the Occupancy map and Norms maps (N), allowing us to
address RQ2. We performed data augmentation by sampling
the robot’s pose for each scene, creating roto-translations of
the feature maps and the corresponding annotations.

Grid-based models take the n × n grids of the feature
maps as a hyper-spectral image input, and output a mission-
specific mask. We employ a U-Net [32], a deep learning
architecture for image segmentation originally proposed for
the biomedical domain, where data is scarce and expensive to
annotate. After preliminary experiments where we observed
the vanilla U-Net and its more recent extensions [33] over-
fit to our training set with no generalization, we limited the
network to a single contracting step, and reduced the number
of channels after the first convolution operation from 64 to
16, leading to networks with about 27k parameters. The
model is trained for up to 200 epochs by minimizing the
Binary Cross Entropy loss, appropriately weighted to account
for the aforementioned class imbalance. The best model was
selected based on the Jaccard index J on a validation set,
constructed by removing 10 scenes from the training set.

Cell-based models take instead a cell at a time from
the n × n grid of each map as input, classifying each
cell based on a vector of the features and their pairwise
interaction. These models trade the geometric information
about the scene for a more manageable feature space (11
dimensions for B inputs, 56 for N), allowing the adoption of



less data hungry models. We employ Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM), and Multilayer Perceptron (MLP),
as implemented in scikit-learn [34]. Parameters’ num-
bers for Cell-based models are 1 to 2 orders of magnitude
lower compared to the 27k of the U-Net. For each model, we
tune its hyper-parameters and classification threshold with
the aforementioned 10 scenes as validation set.

To test our assumption that learning from data is necessary,
we include a non-trained Baseline method that segments
acceptable waiting areas by thresholding the element-wise
minimum values of the input feature maps (implementing
a respect all norms policy). We test the Baseline model
with B maps and with an expert selection of N maps. As
an example, the As far as furthest person map is removed
from the training of the Baseline method classifying Priority
areas. This selection is necessary to ensure a fair comparison:
some feature maps are relevant for only one mission, but the
Baseline method, unlike the trained models, cannot learn this
from data.

D. Results and discussion

Table I presents the average Jaccard index J for each
model, provided input (B and N), separated by test set. We
first notice how the J of the non-trained Baseline cannot
compete with the trained models, confirming our assumption
that learning is indeed necessary. Second, we see how the
prior knowledge injected via the N maps helps the models.
The models trained with the B maps have low precision
and high recall, and learn exclusively that the robot should
wait in unoccupied space, missing the necessary nuances
provided by the N maps. Overall, the models achieve better
Jaccard indexes with the proposed Norms maps, positively
answering RQ2. Furthermore, all models have comparable
performances between the synthetic test datasets (ID and
OOD) and the Real Elevator dataset, positively answering
RQ3.

Entering the experiment, we expected the models to
achieve Jaccard indexes of .4, based on an average of scores
typically achieved in medical segmentation challenges [35]
and on the fact that, unlike the annotators, the models’
decisions depend on the robot’s location and are potentially
impacted by undetected people (because of the egocentric
camera view and occlusions, as shown e.g., in Fig. 4f).

For the Yielding mission, all trained models using the N
maps achieve this target. However, for the Priority mission,
all models are short of this number. The lower Jaccard
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Fig. 3: Score distribution from the expert inspection.

indexes for the Priority mission can be explained by the
fact that the areas annotated for this mission are generally
small in size and even minor shifts between model decision
and annotation can cause low indexes. We can therefore
only partially answer RQ1. To investigate these differences
in performance, we had an annotator visually inspect the
decisions of two models that achieved the highest indexes for
the Real Elevator set – MLP and U-Net, both using N maps
– on 30 random scenes from the OOD and Real Elevator
sets. The expert was prompted with the scenes as shown in
Fig. 4 and asked to score them on a 1-5 Likert scale, from 1
“the model’s decision breaches too many social norms and
technical dependencies to be considered” to 5 “the model’s
decision is better than the expert’s annotation”, and provide
any relevant comment. Fig. 3 summarizes the expert’s scores.

While the scores slightly favor the U-Net, we did not
find statistically significant differences between the mod-
els’ scores (Wilcoxon signed-rank test: for Priority T=36,
p-value=.05; for Yielding T=22, p-value=.15). The expert
pointed out how both models do respect most social norms
and technical dependencies, but do not always respect the
assigned mission, i.e. including yielding locations despite the
Priority mission, and vice-versa.

The Cell-based MLP shows the tendency to include Yield-
ing locations in Priority areas (in 16 out of 30 scenes), as
shown e.g., in Fig. 4d, where portions of the selected area
do not claim priority over all the bystanders. The expert
annotator commented in this regard how “the [MLP] model
seems to not have learned that the priority principle must be
applied to everybody in the scene”. Furthermore, MLP had
the tendency to pay too little attention to the Proxemics norm
when seeking Priority – a risky behavior that can however be
mitigated by further filtering the model’s decision based on
norms that are deemed non-negotiable. The opposite issue
(Priority positions in Yielding areas) was observed only in 8
of the 30 inspected scenes. An example is shown in Fig. 4a,
where the MLP selects an area to the left of the central
person, signaling priority over them. For comparison, the U-
Net avoids this problematic area (see Fig. 4g), but selects
additional areas to the left of the annotation, where visibility
is scarce (hence the annotator giving a score of 3).

The U-Net presents fewer mission mismatches (8/30 for
Yielding, 9/30 for Priority). As an example, in Fig. 4h
the model selects the area behind the rightmost group,
incorrectly signaling priority over the person on the left.
One possible explanation for this difference is that, despite
the prior knowledge injected by the Norms maps, there is
still the need for a residual term capturing these details. The
U-Net, having more representational capacity than the Cell-
based models, is better at recovering this residual term from
the annotations.

Overall, the expert’s inspection favors the U-Net. Fig. 4i
presents a case where the expert reconsidered its annotation
after seeing the U-Net’s decision, stating that “the model
does select a slightly different waiting area, but its area
allows for greater visibility of the elevator’s car while still
achieving the mission”. Similarly in Fig. 4j, the U-Net’s



TABLE I: Jaccard index J of models on the test datasets,
color-coded from .0 (red) to .5 (blue).

ID set OOD set Real Elevator
B N B N B N

Model Target mission: Priority
Baseline .016 .136 .014 .108 .015 .122
LR .010 .160 .019 .173 .015 .164
SVM .014 .140 .018 .159 .017 .142
DT .000 .148 .000 .151 .004 .134
RF .014 .195 .018 .206 .016 .181
MLP .014 .192 .018 .206 .017 .171
U-Net .080 .220 .199 .267 .001 .200
Model Target mission: Yielding
Baseline .066 .159 .044 .165 .075 .147
LR .077 .364 .067 .317 .104 .380
SVM .078 .352 .072 .302 .106 .350
DT .078 .325 .072 .247 .105 .328
RF .078 .349 .072 .297 .106 .365
MLP .078 .362 .072 .316 .106 .400
U-Net .059 .413 .128 .309 .045 .318

decision considers only the sides of the annotator’s area,
avoiding the central area that breaches the Avoid blocking the
door norm – a norm that the annotator purposely decided to
ignore, given the mission and the limited space.

V. LIMITATIONS AND FUTURE WORK

We have explored how the use of social norms maps as
priors can help tackling a data scarce goal selection problem.
Next, we discuss the observed limitations, possible ways of
addressing them, as well as future research directions.

Additional components will be needed to deploy the
proposed method in the real world and enable a robot to
approach, wait for, and board an elevator. First, given the
selected waiting areas, the robot will need to select a goal
pose and navigate there. As the robot may need to respect a
subset of the social norms we considered here while reaching
the selected pose, there is the opportunity of re-using the
proposed maps, potentially as rewards for Reinforcement
Learning navigation techniques [36] or as costs for traditional
planners. Furthermore, our method is modular and additional
feature maps could be included as the context requires it, like
e.g., maps further describing the environment in which the
robots operates. As an example, a People flow map could
be included [37], discouraging the robot from waiting where
people are known to navigate quickly.

Regarding instead the hyper-parameters of the feature
maps, while with more data they could be learned from
expert’s annotations, in future work we want to explore
whether modifications of the feature maps through their
hyper-parameters (for example, changing the Efficient board-
ing map’s d∗ parameter to make the norm stricter) can
influence the models without retraining. If the frozen model’s
decisions reflect these modifications, we would have access
to a quick way to fine-tune the models to new user’s require-
ments or new environments, without additional training and
data annotation.

Once a waiting position is reached and the elevator finally
arrives, the robot needs to negotiate the priority with its
human bystanders. The drop in performance all models suffer

for the Priority mission, and the reachability issues such areas
will likely pose to the robot while navigating towards them,
indicates that positioning alone may not be sufficient and that
additional channels like e.g., (non-)verbal communication
need to be investigated.

Finally, embedding the proposed goal selection pipeline
in a full navigation scenario is the logical next step. While
we expect the U-Net to select goals that respect the in-
vestigated social norms, we are interested in studying how
people behave around robots which mimic such norms while
navigating towards the selected areas.

VI. CONCLUSIONS

We tackled the problem of selecting socially acceptable
waiting positions for a robot sharing the use of elevators
with people. The proposed feature maps, encoding prior
knowledge about social norms and technical dependencies
of the task, allowed for the training of a variety of models
in this low-data regime scenario. Our results confirm the
generalization capabilities of models trained solely on PCG
scenes, as well as the benefits of injecting social norms
directly into the training. As shown by the expert inspection,
the models struggle to pick up some of the nuances between
the two levels of urgency we considered, with the U-Net’s
results being more promising and therefore prompting us
to further explore this direction. As we believe that many
niche yet relevant HRI problems lay in a low-data regime,
these results shed a positive light on the use of PCG and the
practice of feature engineering for prior encoding.
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