Autonomous Generation of Robust and Focused Explanations for Robot
Policies

Oliver Struckmeier, Mattia Racca and Ville Kyrki

Abstract— Transparency of robot behaviors increases effi-
ciency and quality of interactions with humans. To increase
transparency of robot policies, we propose a method for gener-
ating robust and focused explanations that express why a robot
chose a particular action. The proposed method examines the
policy based on the state space in which an action was chosen
and describes it in natural language. The method can generate
focused explanations by leaving out irrelevant state dimensions,
and avoid explanations that are sensitive to small perturbations
or have ambiguous natural language concepts. Furthermore,
the method is agnostic to the policy representation and only
requires the policy to be evaluated at different samples of the
state space. We conducted a user study with 18 participants to
investigate the usability of the proposed method compared to
a comprehensive method that generates explanations using all
dimensions. We observed how focused explanations helped the
subjects more reliably detect the irrelevant dimensions of the
explained system and how preferences regarding explanation
styles and their expected characteristics greatly differ among
the participants.

I. INTRODUCTION

When interacting with an artificial agent, humans tend to
apply their concepts of social interaction and communication
to it. Attributing familiar properties to an agent such as
a robot may make it more trustworthy, explainable and
predictable [1]. The assumptions humans make about the
intentions, functions and purpose of robots are called the
mental model [2], [3]. Having a precise mental model allows
the user to predict the behavior of the robot, increasing the
quality of the interaction as well as the trust that the user
puts into the robot [4]-[6].

To support the formation of precise mental models, robots
need to provide information about their purposes, opera-
tion states, and capabilities. Verbal explanations of policies
have been shown to be an effective strategy to provide
this transparency, affecting trust [6]-[9] and performance
in collaborative scenarios [10], [11]. However, explaining
complex policies can be a tedious and difficult job even for
an expert annotator.

Explanations can be generated automatically by leveraging
information about a particular type of decision model, such
as a Markov decision process (MDP), either directly [8] or
by learning such a model from annotated source code [12]. In
contrast, we address model-agnostic explanations where the
underlying system is treated as a black-box and explanations
are generated by sampling the policy function [13], [14].
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Fig. 1: Explanation scenario: a mars rover presents to the
user (1) its current state through bar indicators with overlaid
descriptors, (2) the action selected by its policy and (3) a
focused explanation for the state-action pair.

However, existing model-agnostic approaches have been
shown to suffer from lack of stability such that small changes
in the policy can lead to different explanations [15].

To robustly explain policies, we propose a method that
generates focused model-agnostic explanations for the ac-
tions of an intelligent system. Inspired by how human
experts explain an unknown system to other humans [7],
the generated explanations focus on most important variables
that led to the explained action. Furthermore, the method
avoids explanations that are not stable, i.e. ones which are
not capable of consistently describing the state with given
concepts, and those that are not relevant such that they do
not not represent causal relationships.

To investigate the impact of focused explanations on
user understanding of policies, we conducted a user study
comparing focused and comprehensive explanations in a
simulated space rover scenario. Results indicate that the pro-
posed focused explanations allow users to better determine
dimensions of the state space that do not play a role in
the robot’s policy and how usefulness of explanations varies
among users, based on personal learning preferences.

II. RELATED WORK

We next discuss the nature of explanations and how
their structure can affect task performance and human-robot
interaction quality. We then review research on autonomous
explanation generation, highlighting the main challenges
faced by these systems.



A. Nature of explanations

Explanations play an important role to make robots in-
terpretable, defined as the degree to which a human can
understand the cause of a decision [16]. Explanations should
be structured such that they support the mutual understanding
of mixed human-robot teams [10], [11] while providing a
satisfying user experience [9], [17].

When inquiring about an unknown intelligent system, peo-
ple’s questions address two main issues [18]: understanding
(1) what action the system took, and (ii)) why did it take
that action, that is, what policy is the system following. In
particular, why explanations describing the policy have been
found to lead to better understanding and higher trust [9].
In this work, we address both issues for policies with
continuous state space and a discrete action set. Explaining
the action in this case is simply achieved by verbalizing the
action. In contrast, providing why explanations requires the
explanation generation to be able to express the state of the
system (input of the policy function) in natural language,
which is not trivial for continuous action spaces.

Kulesza et al. [17] argue that soundness (truthfulness)
and completeness (coverage) are important dimensions of an
explanation. They showed with a user study how users value
complete and detailed explanations and that oversimplified
explanations can negatively affect the users’ mental models.
In contrast, Elizalde et al. [7] found evidence that humans
tend to explain a system’s policy by concentrating on the
most important variables, and that, with such explanations,
their subjects showed a better understanding of the system.
These seemingly conflicting findings appear to stem from
the fact that explanations that are both complete and sound
can become too long and convoluted for complex systems,
countering their benefits. In this work, we sacrifice complete-
ness and study if local explanations, i.e. explanations that
concentrate only on the action taken in a particular state, are
able to decrease the complexity of explanations by focusing
on the locally most relevant variables.

B. Automatically generating explanations

Automatic generation of explanations typically requires
addressing three choices: which explanation template to
adopt, which explanation to use if multiple are available,
and how to verbally describe individually states and actions.

The general structure of explanation templates proposed
in the literature [8], [12] describes verbally one or more
dimensions of state as well as the corresponding action,
following the general prototype “The system performs AC-
TION when DIMENSION has VALUE (and/or DIMENSION2
has VALUE2 and/or...)”. The approaches differ in that the
explanation can refer to only current context (“The system
performed ACTION because...”) [8] or describe all contexts
where a particular action is chosen (“ACTION is performed
when...”) [12]. The former approach leads to concise and
easier to understand explanations while the latter one pro-
vides more complete ones. In line with the concept of local
explanations, we follow the former approach.

When multiple explanations are available, the explainer
has to select one based on some criteria. When the policy
bases its decisions on a multidimensional state space, this
selection can be about which and how many dimensions to
include in the explanation. Including only the dimensions
that matter can both decrease the complexity of explanations
and make them more general. One approach is to determine
a minimal subset of semantic logical predicates that defines
the set of states resulting in a particular action [12]. An
alternative is to leverage a particular characteristic of the
decision model by turning a MDP policy into a factored MDP
to identify the variable that has greatest effect on utility [8].

Ribeiro et al. [13] advocate for model-agnostic approaches
that do not assume any particular structure of the policy. To
achieve that, Hayes [12] proposed to transform the policy
into a MDP using expert annotations in source code. In
contrast, we propose to use sampling of the policy function
in order to determine the relevance of particular dimensions,
which eliminates the need for annotations. This can be seen
as analogous to the LIME method [13], which produces
non-verbal explanations for image and text classification. A
recent study [15] investigated automatic explanation meth-
ods for classification, including LIME [13], regarding their
robustness. Their results suggest that sampling may provide
unstable explanations such that small changes in the state
can lead to different explanations. This is one of the primary
issues addressed by our contribution.

States or sets of states need to be described verbally in
order to include them in explanations. When the state space is
limited and discrete, it may be possible to use it directly [8].
With larger and continuous state spaces, predicates can be
created for semantically meaningful subsets of states [12].
We also follow this approach, but instead of using binary
classifiers as in [12], we use probabilistic classifiers trained
on expert annotations. This allows us to address the problem
of labeling ambiguity.

To address these challenges, we propose a method capa-
ble of autonomously generating model-agnostic and robust
explanations for a robot’s policy based on the most relevant
dimensions of the state space. The proposed method quan-
tifies how relevant each dimension of the state space is for
the explanation and avoids explanations where (i) the verbal
concept used to describe the state is not locally stable or (ii)
the policy is not locally stable.

III. EXPLANATION GENERATION

We are interested in explaining a policy defined on a con-
tinuous space with discrete actions. Formally, let X, a close
subset of R, be the state space and A = {a1,asz,...,ax}
the discrete set of actions. We refer to the dimension i
of a state vector x € X as z;. A stochastic policy is a
function 7(x) : RN — SM with 7;(x) being the probability
of taking action a; in x and S™ being the probability
simplex. For a stochastic policy, we denote the most probable
action as a*(x) = argmax; 7;(x). We assume the numeric
representation of the state space (i.e. the meaning of its
dimensions) to be comprehensible by the user. However, in



order to ease understanding and reduce cognitive load, the
explanations will use a natural language labels to describe
the value of each dimension.

A. Comprehensive explanation

We can explain an action by describing the current state-
action pair (x,a) with an explanation structured as

“I did | action a| because | dimension d; | was and

... and | dimension dy | was | vy |”

il

where a and d; are natural language labels of the action taken
and dimension of state space, and ~; are natural language
descriptors, like “high” or “low”, that describe parts of each
dimension. This formulation assumes that each dimension
can be described independently. We call comprehensive
explanations those that includes all dimensions of the state
space.

To determine the natural language descriptor for dimen-
sion 7, we use membership functions ¢; ;(z;) € [0,1] that de-
termine how well (part of) a dimension ¢ can be described by
natural language concept j. A membership function e; ;(z;)
is analogous to a fuzzy membership function [19] and its
output can also be interpreted as an unnormalized probability.
The membership functions can be encoded manually or
learned from state space samples labeled by a domain expert.

Using the membership functions and the current state x,
the best matching descriptor for dimension ¢ can be defined
as

7; (i) = argmaxe; (). (1)
J
B. Extracting relevant dimensions

While comprehensive explanations are capable of verbal-
izing the current state of the robot, explanations for a high
dimensional state space would be long and thus difficult to
understand. They would also be overly specific, including
dimensions that do not affect action selection (lack of rele-
vance). Moreover, in some parts of the state space the action
selection can be unstable (lack of policy stability). Similarly,
the chosen descriptor may be locally unstable (lack of state
describability). Finally, we want to avoid to use descriptors
that describe different actions (lack of consistency).

To address these issues, we propose measures for each
of the four factors: local measures to address stability and
describability, and global measures for relevance and consis-
tency.

1) Local measures: Local measures are used to quantify,
locally around the state x, the influence of the policy 7 (x)
on the action selection and how well the descriptors of the
given dimension ¢ describe the state. Locality in this context
means that the behavior of action selection and descriptors is
analyzed in the neighborhood of . We sample V' uniformly
distributed states s in a hyper-sphere around x with radius
T,

Sr = {slls —=| <r}. 2

For each sample s € Sy, the descriptors v} (s) are deter-
mined and the most likely selected action a*(s) is identified
by evaluating .

a) Stability: To quantify if a*(x) is the most probable
action in the neighborhood of x, we calculate its frequency
in the sample set as

ZSGSLla*(S):a* (x) 7Ta*<s)
% .

If small changes in state lead to a different a*, the stability
is low.

b) Describability: To quantify if the strongest descrip-
tor v/ is consistent in the neighborhood of x, we calculate
its frequency taking into account the soft membership as

P(a|Sp,mx) = S; = 3)

2 seSL|n; ()= () X, €i,5(8)

v “4)
If small changes in state lead to a different strongest descrip-
tor, the describability is low.

2) Global measures: Global measures quantify properties
over the entire state space. To evaluate them, we generate
W dimension-specific, evenly spaced samples .S along each
dimension 7 by varying z; and fixing the other dimensions
j # 4. The dimension specific global samples S; are
computed as

P(7;|SL77T7Ciaw) ~ Di =

S; = {s|minz; <s; < maxwx;,s; = x;Vj # i} 5)

As for the local samples, a* and ~; are determined for each
sample.

a) Consistency: To quantify if the policy is consistent
with the descriptor (states described by the same descriptor
lead to the same action), we calculate the frequency of the
chosen action in the weighted support of the descriptor

P(’Yﬂsiﬂﬂw) ~ Cl =
2 se il (5)=17 () Aa (s)=a* () 10X €i,5(8)

ZSGS«LH;(S):%* (x) MAX; €,j(8)

(6)

If states described by the same descriptor lead to multiple
different actions, consistency is low.

b) Relevance: To quantify if dimension ¢ affects the
choice of action, we calculate the entropy of actions over
the dimension,

R; = H(alS;, ), (7
with the action probabilities approximated using samples as

ZsGSi\a* (s)=a 1
— W
If all samples along a particular dimension lead to the same
action, i.e. changes along the dimension do not impact the
policy’s choice, the relevance of that dimension is low.

While allowing to explain black-box models, sampling is
however affected by the curse of dimensionality and, as the
number of dimensions rises, more advance sampling schemes
are required. In this work, the sampling parameters r, V'
and W were manually tuned, although heuristics could be
devised based on e.g. the number and location of dimension
descriptors.

P(a]S;,m) = 3



C. Generating Explanations

To choose which dimensions to include in the explanation,
we first determine if a dimension is suitable by comparing
all dimension specific measures S;, D;,C; and R; to related
thresholds ts,tp,tc,tr. If all four measures exceed their
thresholds, the given dimension can be used in an expla-
nation. We selected these thresholds based on the desired
probability to satisfy the corresponding measure. The effects
of the thresholds on the explanations are described in Sec.
IV-A.

For each dimension, we combine these measures into 9,
defined as their product Q; = S; - D; - C; - R;.

An explanation is constructed by sorting the dimensions
by their value of Q;. Let g be a vector of dimension indexes
ranked, with ¢(1) being the index of the dimension with the
highest Q. A focused explanation is constructed with the K
best dimensions, based on this template

“I did | action a | because | dimension dg | was [V |
and ... and | dimension dy(r) | was | v: o |7

The parameter K can be chosen based on the nature of
the state space or based on the expertize of the end-user. We
experimentally chose K, leaving its automatic selection for
future work.

IV. DEMONSTRATION

We will next illustrate the explanation quality measures
in a synthetic example with a 2-D state space, shown in
Fig. 2. The policy to be explained has two actions, with
decision boundary illustrated in red (a deterministic policy
is used for clarity). The first four columns of plots show the
measures S, D, C and R while the fifth shows the Q measure.
The upper row illustrates the measures for dimension Dy,
represented on the x axis of the plot. The lower row for
dimension D1, represented on the y axis. Dg is described
using three descriptors (namely, low, medium and high) while
D, has two (slow and fast). Descriptor boundaries (equal
membership contours) are illustrated in blue (only for the
D, C and Q measures). Three possible values (0.6, 0.7, 0.9)
for thresholds tg,tp,tc,tr are shown.

A. Individual measures

1) Stability: Fig. 2(a) and (f) show the stability measure
S. The stability measure is low close to the decision bound-
ary. Therefore, thresholding this measure prevents explaining
where small changes in state lead to different actions, with
the choice of the threshold determining the size of the
unexplained area. In the case of stochastic policies, the
stability measure avoids explanations in situations with high
action uncertainty, since the samples would be distributed
across several actions resulting in low stability.

2) Describability: Fig. 2(b) and (g) show the describa-
bility measure D. It behaves similarly to the stability in
region of the state space close the descriptor boundaries.
The measures for the two dimensions differ, since the de-
scriptors are specific for each dimension. Thresholding on
the describability prevents explaining where small changes

in the state would lead to a different descriptor, with the
threshold value again affecting the size of the unexplained
area. Furthermore, measure D also captures the inherent
uncertainty of the concept descriptors. For example, if the
descriptors are learned from expert annotations, areas of
state space far from any training samples will have small
membership for all descriptors; this means that there are no
words to describe the current state and an explanation will
not be generated.

3) Consistency: Fig. 2(c) and (h) show the consistency
measure C. Thresholding the consistency prevents expla-
nations where the descriptor used to explain describes a
region of state space that leads to different actions. As an
example, consider the descriptors for the vertical dimension
in Fig. 2(h). The descriptor v;,; (“D; is slow”) describes
areas that lead to the same action, showing high consistency.
On the other hand, descriptor v; 2 (“D; is fast”) leads to
two different actions in some areas of the state space; this is
captured by the low values of C.

4) Relevance: Fig. 2(d) and (i) show the relevance mea-
sure R. Thresholding the relevance prevents explanations
without causality, i.e. the action choice is not affected by the
dimension. For example consider Fig. 2(d) for dimension Dy.
In the lower part of the plot (i.e. for low values of D;), the
action does not change by varying dimension Dy, resulting
in zero relevance. On the other hand, for high values of D1,
moving along Dy results in different actions, as captured by
higher values of R.

B. Generated explanations

Fig. 2(e) and (j) show measure Q after thresholding the
individual measures (¢ = 0.6). In regions where none of the
measures exceeds the threshold, Q is zeroed, excluding the
particular dimension from the explanation.

Fig. 3 illustrates the resulting explanations over the state
space. In the green areas only D is used, in the light blue
areas D;. In the dark blue areas both dimensions are used to
explain, while no explanation that can be produced in the yel-
low area. As an example, area marked with @ is explained
by “I performed ACTION2 because Dy was MEDIUM and
D, was FAST.”, demonstrating that both dimensions matter
and that the explanation is locally stable. In contrast, the
area marked with @ is explained by “I performed ACTION1
because D; was SLOW.”, showing that changes along Dy
would not affected the action for this state. Similarly, the
area marked with @ is explained by “I performed ACTION1
because Dy was HIGH.”, omitting the irrelevant D;.

A few observations can be made. First, no explanations are
generated close to the decision boundary, illustrating that the
proposed method addresses the robustness problem presented
in [15]. Second, a dimension is not used in explanation if
its verbal description is not locally stable, addressing the
robustness of the natural language description of the state.
Third, our method does not explain in states where changing
each dimension one by one would not change the action.
This can be seen in the lower right part of the state space,
where both dimensions are deemed irrelevant.



1.0
0.8
0.6
0.4
0.2

R 1.0
. 0.8
0.6
0.4
. 0.2
0.0

02 04 06 08 1.0
DO

1.07 1.0 1.0
Action 2
0.8 0.8 0.8
0.6 0.6 0.6
a a a
0.4 0.4 0.4
0.2 Action 1 0.2 d 0.2
02 04 06 08 10 02 0.4 06 08 10
DO DO
(a) Stability Do (b) Describability Dg (c) Consistency Do
1.0 1 1.0 1.0
038 0.8 st 038
a a a
0.4 0.4 0.4
0.2 0.2 Slow 0.2

02 04 06 08 1.0 02 04 06 0.8 1.0
DO DO

(d) Relevance Dy (e) Qo, threshold= 0.6

1.0
0.8

0.6

a
0.4
0.2

02 04 06 08 1.0 02 04 06 08 1.0
DO DO

(f) Stability Dy
Policy boundary

(g) Describability D,
Descriptor boundary

02 04 06 08 1.0
DO

(h) Consistency Dy

02 04 06 08 1.0
DO

02 04 06 08 1.0
Do

(i) Relevance D1 (j) Q1, threshold= 0.6

t=0.6 - — = t=07

Fig. 2: Individual measures S;, D;,C; and R; (a)—(d), (f)—(i) with three values of thresholds ¢, and their combination Q; (e),

(§)- Best viewed in color.

02 04 06 08 10
DO

No explanation B Explanation using both dimensions
Explanation using DO s Explanation using D1

Fig. 3: Explanation generation: dimensions used to explain,
for each region of the state space. Best viewed in color.

V. USER STUDY

To explore the usability of our method, we conducted a
user study comparing two explanation generation methods
with a mock-up of a rover operation setting.

A. Experiment design

The participants interacted through a graphical interface
with two simulated rovers, each having its own sensors
(different state space X), different actions A and policy 7.
We compared the proposed focused explanations (F) using
the K = 2 most relevant dimensions (Sec. III-C) with

comprehensive explanations (C) that verbalize all dimensions
of the state space in random order (Sec. III-A).

The participants were tasked to learn about the rovers’
policies by observing a set of state-action pairs and the
corresponding explanations. Each participant was then asked
to replicate the policies, by taking control of the robot’s
action selection. We explored the effects of different expla-
nation methods on the subjects’ understanding of the rovers’
policies as well as the participants’ preferences regarding the
nature of the generated explanations.

Participants: Eighteen participants (age M = 26.6, SD
= 5.5, female 44%) were recruited at a university campus.
Participants received a movie ticket as compensation.

Conditions and Protocol: Each subject interacted with two
simulated rovers (a Mars and a Moon rover) through the
GUI! shown in Fig. 1. The order of explanation methods was
counterbalanced such that each method was tested with each
rover. The state space of each rover consisted of 5 continuous
dimensions. Each dimension had its own label, together with
up to three descriptors and their related classifiers. Each rover
had 5 distinct actions, with policies encoded as decision trees.
The state space, actions and policies were different for each
rover. The dimensions for the Mars rover were Battery Level,
Ground Quality, Signal Strength, Storage and Temperature
and for the Moon rover Radiation Level, Dustiness, Velocity,
Elevation, Brightness. The rovers’ policies used only 4 of
the 5 state dimensions (making one dimension irrelevant for
the action choice), allowing us to observe if the different
explanation methods helped the subjects discern between
relevant and irrelevant dimensions.

First, the participant was introduced to the GUI and to

ICode available at
FocusedPolicyExplanation

github.com/Oleffa/



the experiment’s structure. For each rover, each participant
had two distinct phases: a learning phase and a ftesting
phase. During the learning phase, the subjects observed a set
of 25 state-action pairs. For each pair, an explanation was
generated using either method F or C. In the testing phase,
the participants acted on behalf of the policy and used their
mental model of 7 to select the correct action for 11 states.

During the learning phase, the GUI presented participants
with information about the current state, the selected ac-
tion and the generated explanation. The current state was
presented with (a) numerical values and (b) visually with
bar indicators, overlaid with the descriptors of the given
dimension. We included those state representation in addition
to the explanations as basic mean to make the system
transparent.

During the testing phase, the GUI provided no explana-
tions but queried the participants for an action given a state.
Participants had the option to answer “I don’t know”. We
logged the subjects’ action choices and compared it against
the policies acting as ground truth.

After each learning phase, participants selected which of
the state dimensions were irrelevant for the policy (“Which of
the parameters mattered the LEAST for the rover to choose
an action?”). Furthermore, participants indicated what learn-
ing medium they used the most (“What did you use the most
to learn? the explanations or the bar indicators/numbers?”).
Additionally, the participants filled a questionnaire with
the following 1-7 Likert scale (I Completely Disagree - 7
Completely Agree) statements:

1) I understand the behavior of the rover [Perceived
Understanding]
2) Learning the rover’s behavior was easy [Ease of Learn-
ing]
Statements came with an optional Why? Please explain
question. After the testing phase, the participants filled
another questionnaire with the following 1-7 Likert scale (/
Completely Disagree - 7 Completely Agree) statement:

1) I performed well in the test [Perceived Performance],

followed by a Why? Please explain open question. The
scores are shown in Fig. 4. Finally, we collected participants
preferences for each explanation method, with open feedback
about their concept of ideal explanation (“If you think about
a robot that can explain its actions, what would you like the
explanations to be like?”).

B. Results and Discussion

1) Policy Understanding: To assess the subjects’ under-
standing of the rovers’ policies with different explanation
methods, we operationalized their understanding U as the
percentage of correct state-action pairs provided during the
testing phase. Following from [9], our hypothesis was that
subjects would have a better understanding with focused
explanations F compared to comprehensive explanations C.
We however observed a U of 50.5% for method F and 49.0%
for method C, with no statistically significant differences
(Wilcoxon Signed-rank test, Z=0.47, p>0.05). We then

mmm Method F
Method C
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Perceived Perceived
Understanding Performance

Ease of
Learning

Fig. 4: Questionnaire scores (1-7 Likert scale) for each
explanation method.

looked how often the subjects replied “I don’t know” during
the test for both methods. While subjects replied incorrectly
on average to half of the test questions, the number of “I
don’t know” was extremely low, with only 5 such answers
out of 198 for method F and 12 for method C. This
may suggest how the explanations bolstered the subjects’
confidence, inflating their self assessed understanding of the
policies.

We therefore analyzed the scores of the three Likert state-
ments, with the results summarized in Fig. 4. The subjects
rated their perceived understanding of the policy after the
learning phase with a median of 5 for method F and 4 for
method C. The score slightly decreased after the test phase,
with the participants self assessing their test performance
with a median of 4 for method F and 3.5 for method C.
In the free-form feedback, the subjects mainly commented
about their ability (or difficulties) in learning the state-action
pairs dictated by the rovers’ policies.

Regarding the ease of learning score, both explanation
method received above average scores, with method F having
a median of 5 and method C of 4. Looking at the subjects’
comments regarding the easiness of learning with method F,
we can see how shorter explanations are consistently con-
sidered an easier way of learning. Furthermore, 6 subjects
realized how these explanations were not only shorter but
focused on the important aspects of the action selection,
despite no information was given them regarding the dif-
ferent methods. While the questionnaire scores are slightly
better for method F, the differences on the questionnaire
scores are not statistically significant (Wilcoxon Signed-rank
test, p>0.05 for all scores), indicating that the differences
between explanation methods are likely small if any exist.

We then looked at the ability of the participants to single
out the irrelevant dimension in the rover’s policy (see Fig. 5).
For method F, 13 out of 18 subjects correctly identified the
irrelevant dimension. With method C instead, only 2 subjects
selected the correct irrelevant dimension. The rest of them
either selected the wrong dimension (10) or listed additional
dimensions together with the correct one (6). Although no
effect is seen on the policy understanding U, the proposed
method F helped the participants to single out the irrelevant
dimensions more reliably. This result is in line with what
theorized and observed in [8] where a policy with a five di-
mensional state space was explained with similarly structured
focused explanations, helping the subjects having a better
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Fig. 5: Correctly identified irrelevant dimensions with fo-
cused explanations (method F) and comprehensive explana-
tions (method C).

policy understanding. This advantage, already visible with
these experiments’ relatively low dimensional state space, is
likely to be even more important with more complex policies,
where method C would generate explanations cluttered with
irrelevant dimensions.

2) Explanation Preferences: When asked about their pre-
ferred explanation style, 8 subjects preferred method F’s
explanations and 8 method C’s explanations, with 2 subjects
stating no preference. Subjects that preferred F’s explana-
tions backed their choice with comments like “Very long ex-
planations are more difficult for me”, “With fewer variables
to look at, it is easier to learn and then perform well in the
test” and “It helps you see the priority of the parameters”.
Subjects that liked method C’s style of explanations instead
commented “It feels more human like with longer ones”,
“I feel like I had more information and could therefore
understand the choice a bit better” and “I prefer longer
explanations but only if they are organized by importance”.
We see again how the subjects were able to describe the
characteristics of each explanation method without being
explicitly informed about them.

The surprising even split in the subjects’ preferences
between method F and C resembles the contrasting results
found in the literature, with work advocating for explanation
completeness [17] and other work showing the advantages
of focused explanations over complete one [7]. In the light
of the results, we believe the choice between explanations
styles in our experiment to be influenced by personal traits
of the users, like interest and curiosity towards the explained
system and commitment towards the learning task. The
results align with [18], suggesting that there is no perfect
type of explanation that satisfies everyone’s needs and at the
same time improves the level of understanding. We therefore
believe that further research is needed to investigate if and
how explanation methods should adapt to the users.

In the free-form feedback at the end of the experiment,
4 subjects restated how their ideal explanation needs to be
short, focused and clear. For another 3 subjects, the order by
which the information is provided in an explanation is the
most important factor, with the most relevant information
being presented as early as possible. These explanation
requirements are met by our method F thanks to the proposed
quality measures that allow to rank the dimensions and
threshold them to remove irrelevant dimensions.

Finally, 6 subjects stated that they expected extra infor-
mation in addition to the proposed explanation template.
While our explanations are capable of conveying the state-
action pairing given by the policy, the subjects expected extra
semantic information about the logic behind why certain ac-
tions occurred as a reaction to certain states. One participant
described this concept by commenting “I would prefer to
explain the important things and say why. Not only state
the important values but also state why that is important.
Like I do an emergency shutdown because radiation is
high and brightness is low which poses risks for the
rover’s components”. If we take the explanation in Fig. 1 as
example, the following information would need to be added:
“I did move because the Battery Level is high and I therefore
don’t risk to run out of Battery and the Ground Quality
is low and my goal is to collect high quality samples” .
Such requirements pose serious challenges to all automatic
explanations strategies. In [8], a step towards meeting these
requirements was done by augmenting the explanations with
extra information coming from an hand-coded knowledge
base of relations between variables, components and pro-
cedures of the system. However, such detailed semantic
information is rarely provided together with the policy by
its designer, or might not be directly available (e.g. because
encoded in the reward function in a Reinforcement Learning
scenario). Therefore, generating explanations of this nature
will require an augmentation of the policy itself or of the
process employed to learn it, opening challenging research
directions.

3) Explanations vs Bar Indicators: As described in
Sec. V-A, the GUI included visual indicators (in the form of
bar indicators) to illustrate the current rover state and action.
The participants had therefore two information sources about
the policy: the bar indicators and the explanations. When
surveyed about their preferred medium, 9 subjects reported
the explanations and 9 subjects selected the bar indicators.

As half of the subjects did not use explanations as their
primary information source, the results presented earlier
comparing the explanation methods are likely to be heavily
shadowed by this effect. We therefore grouped the partici-
pants according to their preferred learning medium, denoting
the group that preferred to learn from explanations E and
the group that preferred bar indicators I. We then compared
the groups with respect to policy understanding U and the
questionnaire scores, with Table I summarizing the results.

While we still did not see significant differences between
groups I and E regarding the policy understanding U, we
observed higher scores of perceived understanding and ease
of learning for group E. While there seems to be a trend
towards method F across these measures, the preferred
learning medium seems to have a larger influence, with
explanations having higher scores regardless of the method
used to generate them.

VI. CONCLUSIONS

In this paper, we presented a method to automatically
generate explanations expressed in natural language for poli-



TABLE I: Policy understanding U and questionnaire’s scores: descriptive statistics (median) with subjects grouped by learning
medium preference (explanations E vs indicators I), for each explanation method (F and C) and combined. Test statistics

and p—values of unpaired comparison (Mann-Whitney U test).

| F.E C,E  CombinedE | F, I G I Combined I | Combined E vs Combined I
Policy Understanding U ‘ 50.5%  55.5% 53.0% ‘ 49.5%  43.5% 45.6% ‘ U=130.5, p>0.05
Perceived Understanding 5.0 5.0 5.0 4.0 3.0 3.5 U=75.0, p<0.01%*
Perceived Performance 5.0 4.0 4.0 3.0 3.0 3.0 U=121.5, p>0.05
Ease of Learning 5.0 4.0 5.0 4.0 2.0 35 U=58.5, p<0.01#*
cies with discrete actions and continuous state spaces. The [2] J. de Greeff and T. Belpaeme, “Why robots should be social: Enhanc-
method evaluates explanations based on four quality mea- ing maihllng lear‘;‘“‘g’otlhsro“gh social human-robot interaction,” PLoS
. one, vol. 10, no. 9, .
sures, designed to encourage robustness and compactness. (3] j B. Lyons, “Being transparent about transparency,” in AAAI Spring
Moreover, the method does not make assumptions on the Symposium, 2013.
policy’s nature, requiring only that the policy function can  [4] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to
. the people: The role of humans in interactive machine learning,” Al
be evaluated at samples to compute the quality measures. Magazine, vol. 35, no. 4, pp. 105-120, 2014.
To evaluate the generated focused explanations, we con- [51 P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. Chen, E. J.
: : : De Visser, and R. Parasuraman, “A meta-analysis of factors affecting
ducted a, user Smdy’ (?Xp lormg how e’xp lane.ltlons influence trust in human-robot interaction,” Human Factors, vol. 53, no. 5, 2011.
the user’s understanding of a robot’s policy as well as [6] A. Theodorou, R. H. Wortham, and J. J. Bryson, “Why is my robot
their experience during the interaction. The results show behaving like that? designing transparency for real time inspection
that focused explanations help the subjects to better detect ;’an‘l’vugfg?}f‘f;;:sﬁo%l 61“ AISB Workshop on Principles of Robotics.
which dimensions of a system are relevant for the action [7] F. Elizalde, E. Sucar, M. Luque, J. Diez, and A. Reyes, “Policy
selection when compared to comprehensive explanations, explanation in factored markov decision processes,” in Proceedings of
However, personal learning styles seemed to play a big role tzii)eogih g)”r gf;i‘l‘g 4W%‘(‘)"g”p on Probabilistic Graphical Models (PGM
in the subjects’ ability to benefit from different kinds of 8] E Eli;alde, E. Suc;\r, J. Noguez, and A. Reyes, “Generating explana-
explanations and we believe further research is needed to tions based on markov decision processes,” in Mexican International
: : : . Conference on Artificial Intelligence, pp. 51-62, Springer, 2009.
investigate I.low‘verbal explanatlops fare agalnst others means (9] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why not
of communication such as the visual indicators used in our explanations improve the intelligibility of context-aware intelligent
user study. Furthermore, we believe that the choice of expla- systems,” in Proceedings of the onference on Human Factors
dy. Furth s beli hat the choi f expl " in P dings of the SIGCHI Confé H Fe
nation method affects the user’s level of understanding and [10] ;\’I’ Cvflzlfjg”t’]’;g f/yséey”;;’dstpﬁ 2ai11(19;2léS’P/;ﬁl\/[‘:Tzll(z:O?inpact of pomdp-
thus the user’s goal should affect the choice. For example, generated explanations on trust and performance in human-robot
supervising a robot’s operation or being able to debug its teams,” in Proceedings of the 2016 international conference on au-
: : . : tonomous agents & multiagent systems, pp. 997-1005, International
operanon would require dl,fferent levels of imderstandlng and Foundation for Autonomous Agents and Multiagent Systems, 2016.
might thus benefit from different explanation methods. [11] A. St Clair and M. Mataric, “How robot verbal feedback can improve
i i - team performance in human-robot task collaborations,” in Proceedings
While our study concentrated on the amount of infor f in h bot task collaborations,” in Proceedi
. . . . of the tenth annual acm/ieee international conference on human-robot
mation included by comparing focused and comprehensive interaction, pp. 213-220, ACM, 2015
explanations, the proposed method can also detect when an  [12] B. Hayes and J. A. Shah, “Improving robot controller transparency
explanation is robust and abstain from explaining when the through autonomous policy explanation,” in Proceedings of the 2017
proposed measures are low. This ability to not explain in ﬁCR/i/[/IEEngxe%‘;ﬁoglé %()S;Ze)re;;e3gz_§{42rn ?éﬁb%l[;”em”w"’
certain circumstances brings two challenges. First, ways to  [13] M. T. Ribeiro, S. Singh, and C. Guestrin, “Model-agnostic inter-
express this incapability to explain need to be designed: non- pretability of machine learning,” in ICML Workshop on Human
, Interpretability in Machine Learning, 2016.
explanations could take advantage of the presented measures [14] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
and adjust the conveyed message to help the user understand Explaining the predictions of any classifier,” in Proceedings of the
the reason why no explanation was generated (e.g. I did not 22nd ACM SIGKDD international conference on knowledge discovery
. . , . . and data mining, pp. 1135-1144, ACM, 2016.
explain because I cannot describe the current situation with [15] D. Alvarez-Melis and T. S. Jaakkola, “On the robustness of inter-
my vocabulary). Second, we need to investigate the effects pretability methods,” in ICML Workshop on Human Interpretability in
of non-explanations on the user. While the robot’s ability to Machine Learning (WHI 2018), 2018.
[16] T. Miller, “Explanation in artificial intelligence: Insights from the

avoid explaining could help the user form a truthful mental
model of the policy, this ability is likely to influence the
users’ trust towards the robot and their perceptions of the
robot’s capabilities and utility.
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