Teacher-Aware Active Robot Learning

Mattia Racca, Antti Oulasvirta and Ville Kyrki mattia.racca@aalto.fi

ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2019

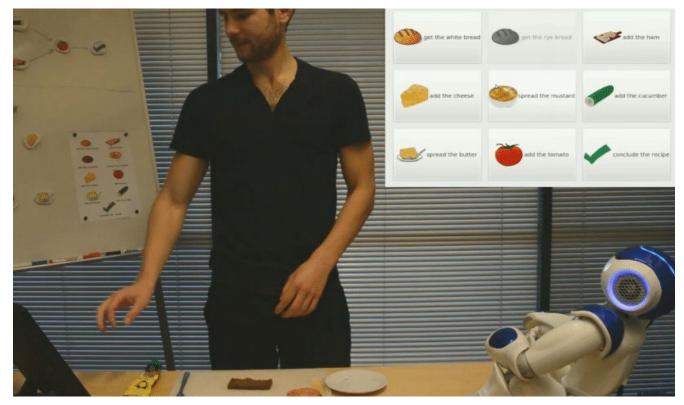
Aalto University School of Electrical Engineering

Why (active) learning robots?

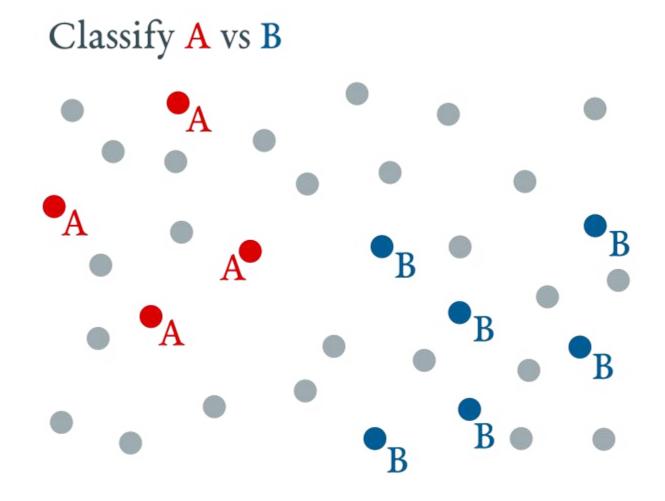
Programming robots is hard, **pre-programming** them for each task is harder **impossible**.

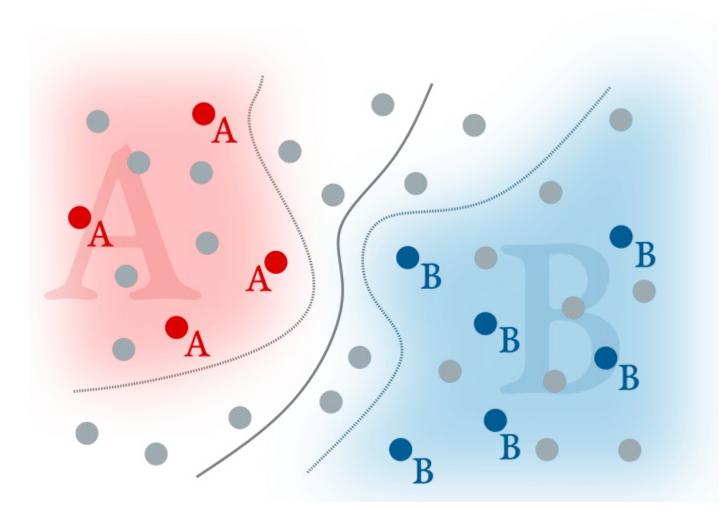
Why (active) learning robots?

Robot should learn by interacting with humans!

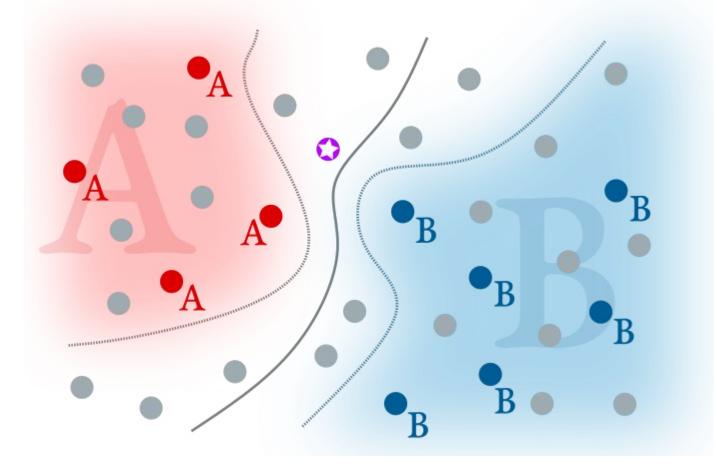


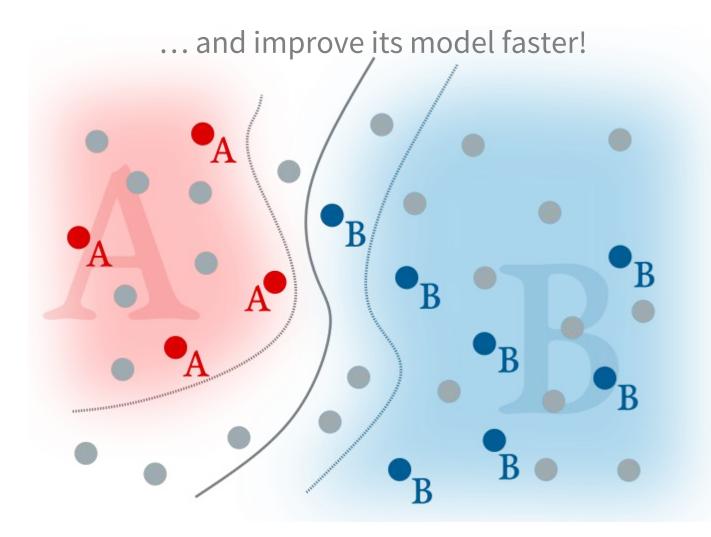
M. Racca and V. Kyrki, Active Robot Learning for Temporal Task models, HRI '18





The agent can **efficiently** choose what to learn next.





Important aspects of Active Learning for HRI

Transparency

Control over interaction

1. Interactive Nature

Design of questions

Timing of questions

Important aspects of Active Learning for HRI

Transparency

Control over interaction

1. Interactive Nature

Design of questions

Timing of questions

2. Query Efficiency

Learning faster (with less data)

Important aspects of Active Learning for HRI

Transparency

Control over interaction

1. Interactive Nature

Design of questions

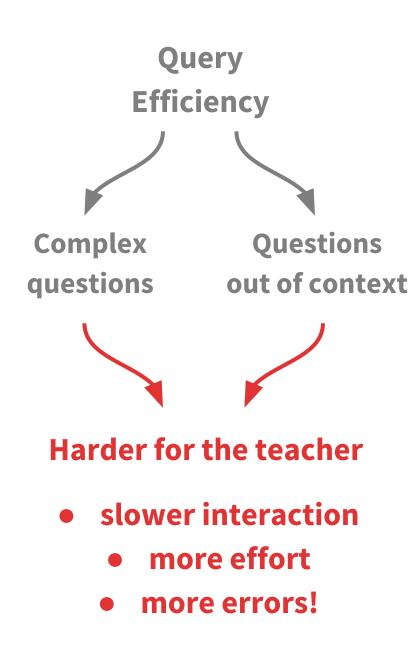
Timing of questions

2. Query Efficiency

Learning faster (with less data)

But what about REAL users?

What if efficient query selection is not best for the interaction?



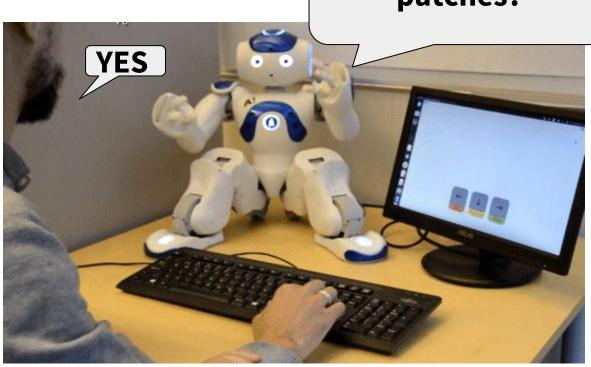
Can efficiency indirectly counter its own benefits?

Different types of Active Learning

An agent has to **learn the value of a certain attribute** *a* for a set $\boldsymbol{\mathcal{E}}$ of entities by making **queries**. We used the **Animals with Attributes 2*** dataset with 50 animals (entities) and 85 semantic attributes.

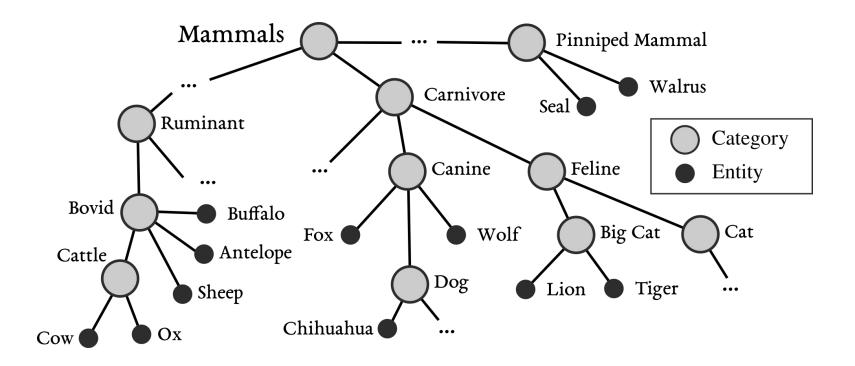
An agent has to **learn the value of a certain attribute** *a* for a set *E* of entities by making **queries**. We used the **Animals with Attributes 2*** dataset with 50 ani semantic attributes.

Do giraffes have patches?



- categories **C** over entities using **WordNet**
- Learner assumption: *Entities in the same category are more likely to share the same attribute value.*

- categories **C** over entities using **WordNet**
- Learner assumption: *Entities in the same category are more likely to share the same attribute value.*



Classic AL: Uncertainty Sampling

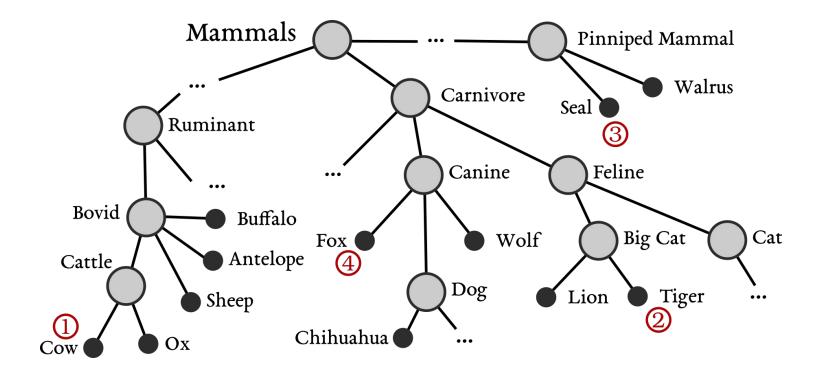
• Learner C:

- uses Uncertainty Sampling
- selects the most uncertain query, given the current model.
- As expected **efficient!**

Classic AL: Uncertainty Sampling

• Learner C drawbacks

- Some questions are **difficult!**
- Topic or **context switches!**



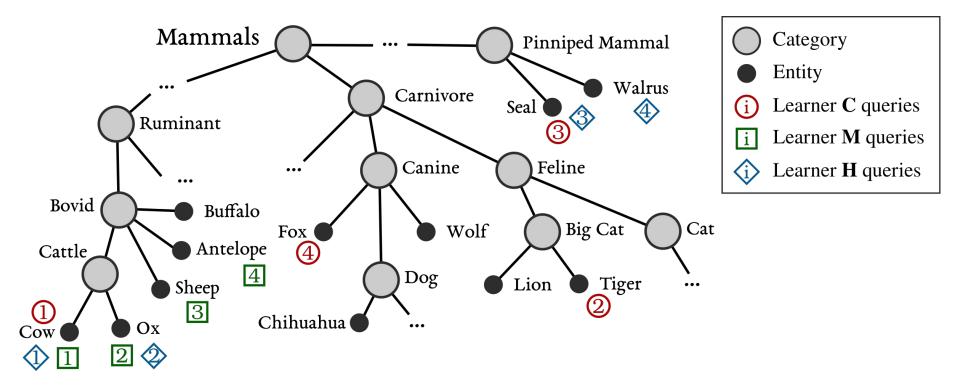
In response to the drawbacks

- **Teacher-Aware** strategy (Learner M)
 - Inspired by ACT-R declarative memory model, saying "Information associated with recently retrieved information is easier to retrieve",
 - minimize the distance between consecutive queries

In response to the drawbacks

- **Teacher-Aware** strategy (Learner M)
 - Inspired by ACT-R declarative memory model, saying "Information associated with recently retrieved information is easier to retrieve",
 - minimize the distance between consecutive queries;
- Hybrid strategy (Learner H)
 - a tradeoff between Learner C and Learner M

Teacher-Aware AL: Memory Effort strategy

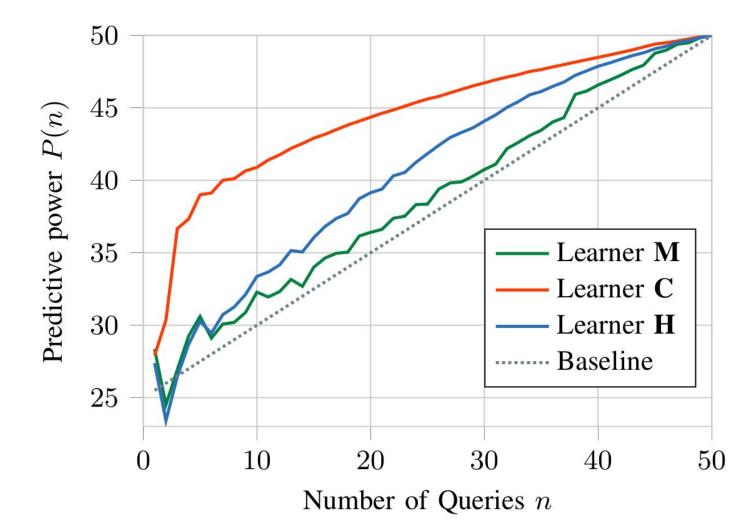


Performance in Simulation

Simulation on the entire dataset:

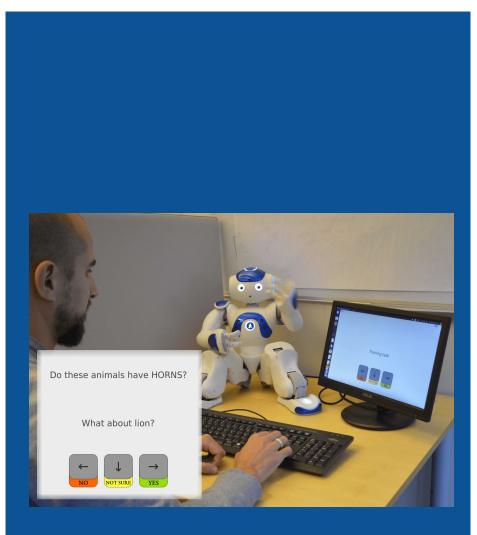
- Perfect users (no errors, no distraction)
- **Baseline**: asks random questions and cannot leverage our model to make predictions

Performance in Simulation



What about real users?

User study: 26 participants, the 3 strategies as conditions (within-subject).

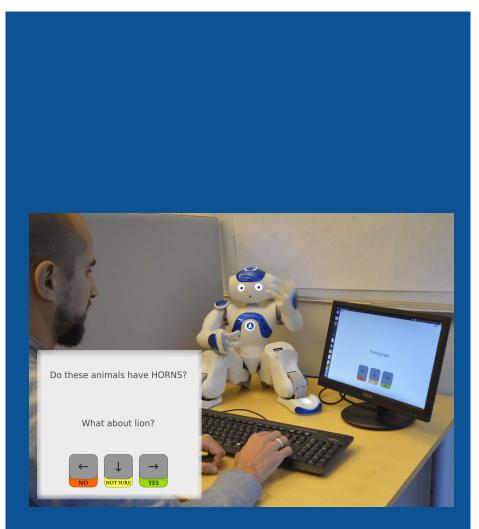


What about real users?

User study: 26 participants, the 3 strategies as conditions (within-subject).

Data logged:

- NASA TLX
- Q&A, response times, prediction power
- Overall preferences



What about real users?

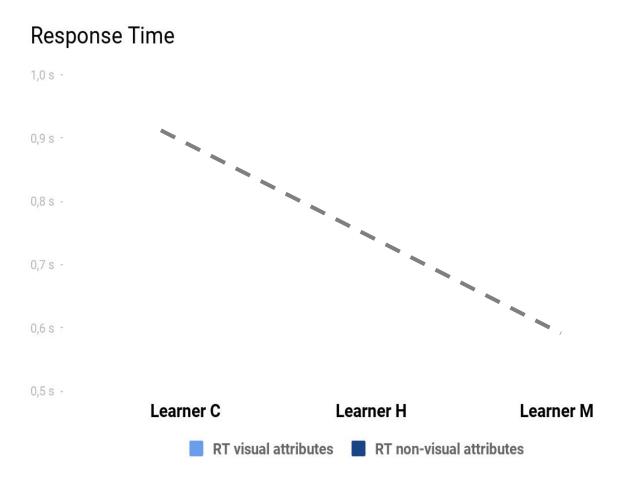
User study: 26 participants, the 3 strategies as conditions (within-subject).

Data logged:

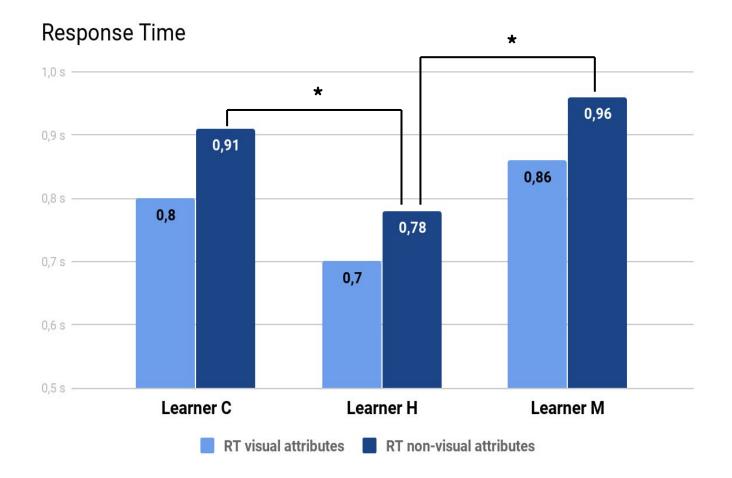
- NASA TLX
- Q&A, response times, prediction power
- Overall preferences

Our hypotheses: Learner M makes the participants reply (a) faster and (b) with less errors compared to Learner C, with Learner **H** achieving intermediate results.

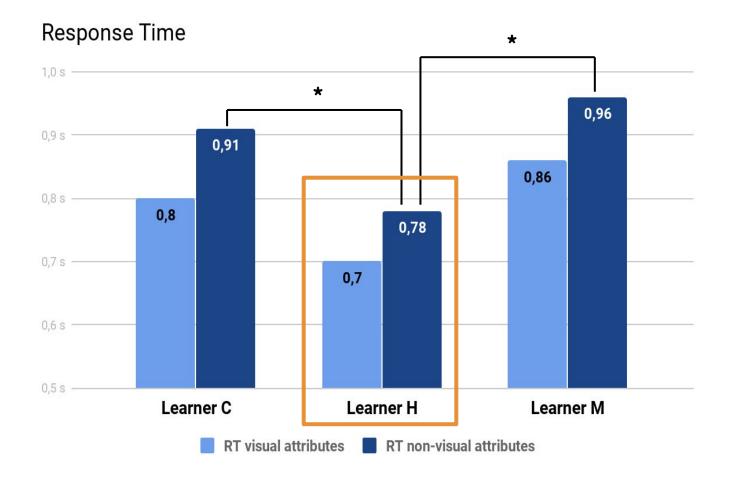
Results



(Unexpected) Results



(Unexpected) Results



(Unexpected) Results

Error Rate



• Higher response time and more errors for Learner C.

 Higher response time and more errors for Learner C.
 stressful, unpredictable and requiring more thinking

- Higher response time and more errors for Learner C.
 stressful, unpredictable and requiring more
 - stressful, unpredictable and requiring more thinking
- Higher response time and more errors for Learner M.

- Higher response time and more errors for Learner C.
 - stressful, unpredictable and requiring more thinking
- Higher response time and more errors for Learner M.
 - easy, natural and predictable

- Higher response time and more errors for Learner C.
 - stressful, unpredictable and requiring more thinking
- Higher response time and more errors for Learner M.
 - easy, natural and predictable
 - too easy? lowering attention or cause boredom

- Higher response time and more errors for Learner C.
 - stressful, unpredictable and requiring more thinking
- Higher response time and more errors for Learner M.
 - easy, natural and predictable
 - too easy? lowering attention or cause boredom
 - too predictable? using the same (maybe wrong) answer

• Overall preferences:

• Overall preferences:

• Learner C as efficient —> Mitigating difficulty!

• Overall preferences:



- Learner C as efficient —> Mitigating difficulty!
- Learner M as useless —> Frustration and boredom!

• Overall preferences:

- Learner C as efficient —> Mitigating difficulty!
- Learner M as useless —> Frustration and boredom!
- AVOID USELESS QUESTIONS!

Conclusions

Can efficiency-driven Active Learning counter its own benefits?

Conclusions

Can efficiency-driven Active Learning counter its own benefits?

If we consider in the equation **non-oracle users**, **yes**! But we just scratched the surface...

- We need a better understanding of interaction aspects that can affect learning
- Strategies that can **adapt to the specific user**

Teacher-Aware Active Robot Learning

Mattia Racca, Antti Oulasvirta and Ville Kyrki

mattia.racca@aalto.fi

Can efficiency-driven Active Learning counter its own benefits?

If we consider in the equation **non-oracle users** and the **interaction**, **yes**!

Thank you for the attention! Code available at github.com/MattiaRacca

Tree building algorithm

Algorithm 1 Build Entity-Category tree

Input: Entity set \mathcal{E} , Root of the tree \mathcal{R} , WordNet **Output:** Entity-Category tree \mathcal{T} , Category set \mathcal{C}

- 1: Initialized tree ${\mathcal T}$ with root in ${\mathcal R}$
- 2: for all entities $e \in E$ do
- 3: # find WordNet hypernym path leading from e to \mathcal{R}
- 4: $\rho \leftarrow \{\}; \omega \leftarrow \text{parent node of } e$
- 5: while $\omega \neq \mathcal{R}$ do
- 6: Append ω to ρ
- 7: $\omega \leftarrow \text{parent node of } \omega$
- 8: end while
- 9: Add ho to ${\mathcal T}$
- 10: **end for**
- 11: Prune trivial nodes from \mathcal{T} (nodes with a single child)
- 12: $\mathcal{C} \leftarrow all$ non-terminal nodes of \mathcal{T}

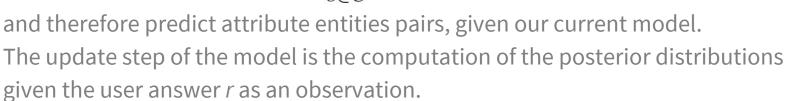
Attribute-Category Model

We model the probability of attribute *a* applying to category *c* as

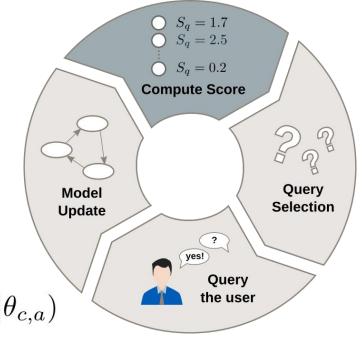
$$p(a = x|c) \sim f_{c,a}(x|\theta_{c,a}),$$

and then we maintain a prior over these distribution. We can then compute the probability of *a* applying to entity *e* as

$$p(a = x|e) \sim f_{e,a}(x) = \sum_{c \in C} \bar{w}_{c,e} f_{c,a}(x|\theta_{c,a})$$



$$\begin{split} p(\theta_c | q_e, r) &\propto p(\theta_c | \alpha_c, \beta_c) p(q_e, r | \theta_c) = \\ &= \begin{cases} \text{Beta}(\theta_c | \alpha_c + \bar{w}_{c,e}, \beta_c) & \text{if } r = \text{yes} \\ \text{Beta}(\theta_c | \alpha_c, \beta_c + \bar{w}_{c,e}) & \text{if } r = \text{no} \end{cases} \end{split}$$



Scores for each active learner

Learner C

$$s_{q,\mathbf{C}} = \mathbb{H}(\hat{f}_e(x)),$$

where $\hat{f}_e(x) = \text{Ber}(x|\theta = \sum_c \bar{w}_{c,e}\theta_c)$ is an approximation of the full Bernoulli Mixture, as the entropy of a Bernoulli Mixture cannot be computed in close form.

Learner M

$$s_{q,\mathbf{M}} = \exp(-\delta d(e,p)),$$

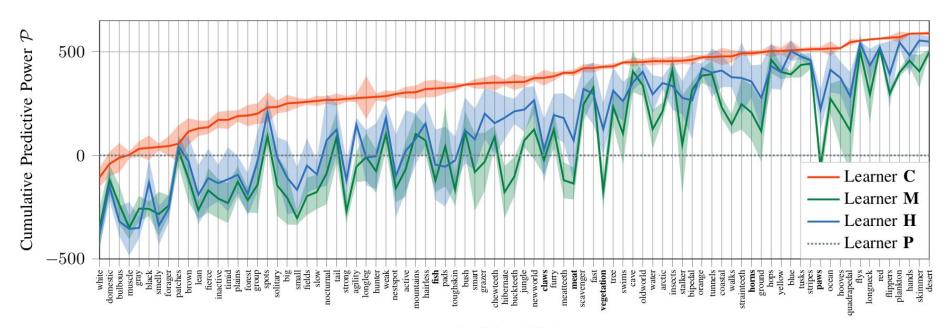
where d(e, p) is the distance (used in Eq. 3) between the entity e target of query q and the entity p target of the previous query and δ being a scale parameter similar to γ .

Learner H

$$s_{q,\mathbf{H}} = \phi s_{q,\mathbf{C}} + (1-\phi)s_{q,\mathbf{M}},$$

where parameter $\phi \in [0, 1]$ controls the trade-off between the other two strategies.

Assumption choice



AwA2 Attributes