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Why (active) learning robots?

Programming robots is hard, pre-programming them
for each task is-harderimpossible.



Why (active) learning robots?

Robot should learn by interacting with humans!

M. Racca and V. Kyrki, Active Robot Learning for Temporal Task models, HRI ‘18



The idea behind Active Learning
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The idea behind Active Learning




The idea behind Active Learning

The agent can efficiently choose what to learn next.




The idea behind Active Learning

... and improve its model faster!




Important aspects of Active Learning for HRI
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Important aspects of Active Learning for HRI

Transparency Control over interaction
1. Interactive Nature

Design of questions Timing of questions

2. Query Efficiency
Learning faster (with less data)

But what about REAL users?
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What if efficient query
selection is
for the interaction?




Query

Efficiency
Complex Questions
questions out of context
Harder for the teacher

e slower interaction
e more effort
® more errors!

Can efficiency
indirectly

counter its
owhn benefits?




Different types of Active Learning

1. CLASSIC
AL STRATEGY © ®
(LEARNER ()
3. HYBRID AL
STRATEGY

(LEARNER H)

2. TEACHER-AWARE
AL STRATEGY
(LEARNER M)
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Problem statement & Evaluation scenario

An agent has to learn the value of a certain attribute a for a

set &£ of entities by making queries. We used the Animals with
Attributes 2* dataset with 50 animals (entities) and 85
semantic attributes.
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*Y. Xian, et al.. Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly, T-PAMI



Problem statement & Evaluation scenario

An agent has to learn the value of a certain attribute a for a

set &£ of entities by making queries. We used the Animals with
Attributes 2* dataset with 50 anj

semantic attributes.

Do giraffes have
patches?
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*Y. Xian, et al.. Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly, T-PAMI



Problem statement & Evaluation scenario

e categories C over entities using WordNet
e Learner assumption: Entities in the same category are
more likely to share the same attribute value.
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Problem statement & Evaluation scenario

e categories C over entities using WordNet
e Learner assumption: Entities in the same category are
more likely to share the same attribute value.
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Ruminant
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C Chihuahua
ow
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Classic AL: Uncertainty Sampling

e LearnerC:
o uses Uncertainty Sampling
o selects the most uncertain query,
given the current model.
o As expected efficient!
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Classic AL: Uncertainty Sampling

e Learner Cdrawbacks
o Some questions are difficult!
o Topic or context switches!

Pinniped Mammal
Carnivore Walrus
Seal

Canine

Mammals

Ruminant

Bovid Buffalo
Fox Cat
Cattle Antelope  (Z)
Sheep éiger
@ Chihuahua

Cow
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In response to the drawbacks

e Teacher-Aware strategy (Learner M)

o Inspired by ACT-R declarative memory model,
saying “Information associated with recently
retrieved information is easier to retrieve”,

o minimize the distance between consecutive
queries
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In response to the drawbacks

e Teacher-Aware strategy (Learner M)

o Inspired by ACT-R declarative memory model,
saying “Information associated with recently
retrieved information is easier to retrieve”,

© minimize the distance between consecutive
queries;

e Hybrid strategy (Learner H)

o atradeoff between Learner C and Learner M
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Teacher-Aware AL: Memory Effort strategy

Mammals Pinniped Mammal
Carnivore Seal Wzgs
Ruminant @@
Canine Feline

Bovid Buffalo

Fox Cat

Antelope
Sheep

Chihuahua

Cattle

Cow

&I Oé

() Learner C queries
Learner M queries
@ Learner H queries
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Performance in Simulation

Simulation on the entire dataset:

e Perfect users (no errors, no distraction)
e Baseline: asks random questions and cannot leverage our
model to make predictions
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Performance in Simulation

Predictive power P(n)
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What about real users?

User study: 26 participants,
the 3 strategies as conditions
(within-subject).
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What about real users?

User study: 26 participants,
the 3 strategies as conditions
(within-subject).

Data logged:

e NASATLX

e Q&A, response times,
prediction power

e Overall preferences

Our hypotheses:

Learner M makes the
participants reply (a)
faster and (b) with less
errors compared to
Learner C, with Learner
H achieving
intermediate results.




Results

Response Time

Learner C

B RT visual attributes

Learner H Learner M

B RT non-visual attributes
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(Unexpected) Results

Response Time *
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B RT visual attributes [} RT non-visual attributes
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(Unexpected) Results

Response Time *

Learner C Learner H Learner M

B RT visual attributes [} RT non-visual attributes
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(Unexpected) Results

Error Rate

LearnerC LearnerH LearnerM

B Error Rate
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Discussion

e Higherresponse time and more errors for Learner C.
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Discussion

e Higherresponse time and more errors for Learner C.
o stressful, unpredictable and requiring more
thinking
e Higher response time and more errors for Learner M.
o easy, natural and predictable
o too easy? lowering attention or cause boredom
o too predictable? using the same (maybe wrong)
answer
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Discussion

e Overall preferences:

B LearnerC | LearnerH B Learner M
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Discussion

e Overall preferences:

B LearnerC | LearnerH B Learner M

e Learner C as efficient —> Mitigating difficulty!
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Discussion

e Overall preferences:

B LearnerC | LearnerH B Learner M

e Learner C as efficient —> Mitigating difficulty!
e Learner M as useless —> Frustration and boredom!
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Discussion

e Overall preferences:

B LearnerC | LearnerH B Learner M

e Learner C as efficient —> Mitigating difficulty!
e Learner M as useless —> Frustration and boredom!
e AVOID USELESS QUESTIONS!
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Conclusions

Can efficiency-driven Active Learning counter its
own benefits?
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Conclusions

Can efficiency-driven Active Learning counter its
own benefits?

If we consider in the equation non-oracle users, yes!
But we just scratched the surface...

e We need a better understanding of interaction
aspects that can affect learning
e Strategies that can adapt to the specific user
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Can efficiency-driven Active Learning
counter its own benefits?

If we consider in the equation non-oracle
users and the interaction, yes!
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Thank you for the attention!
Code available at github.com/MattiaRacca



Tree building algorithm

Algorithm 1 Build Entity-Category tree

Input: Entity set £, Root of the tree R, WordNet
Output: Entity-Category tree 7, Category set C
1: Initialized tree 7 with root in R
2. for all entities e € E do
3.  # find WordNet hypernym path leading from e to 'R
4. p < {}; w < parent node of e
5:  while w # R do
6: Append w to p
7 w <— parent node of w
8. end while
Add pto T
10: end for
11: Prune trivial nodes from 7 (nodes with a single child)
12: C <+ all non-terminal nodes of T

o 8o
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Attribute-Category Model

We model the probability of attribute a applying
to category c as

pla =z|c) ~ fealz]e,a), C@
and then we maintain a prior over these
Model

distribution. We can then compute the Update
probability of a applying to entity e as

@
?@“

o

Query
Selection

-
Query

p(a | ) fea ch 6fca :E|(90 a) Mol the user

ceC
and therefore predict attribute entities pairs, given our current model.

The update step of the model is the computation of the posterior distributions
given the user answer r as an observation.

p(9c|Qe, 7’) X p(96|am Bc)p(Qea T|96) —

_ [Beta(f.|ac + We e, Be) if 7 =yes
| Beta(f.|ae, Bec + Wee) if r =no
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Scores for each active learner

Learner C Sq.Cc = H(fe(x))

where f.(z) = Ber(z|0 = > .. Weel:) is an approximation
of the full Bernoulli Mixture, as the entropy of a Bernoulli
Mixture cannot be computed in close form.

Learner M
SqM = exp(—dd(e,p)),
where d(e, p) is the distance (used in Eq. 3) between the entity

e target of query ¢ and the entity p target of the previous
query and 0 being a scale parameter similar to ~.

Learner H
SqH = PSq,c + (1 = ¢)5q,M’

where parameter ¢ € [0, 1] controls the trade-off between the
other two strategies. .
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