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Abstract—This paper investigates Active Robot Learning
strategies that take into account the effort of the user in an
interactive learning scenario. Most research claims that Active
Learning’s sample efficiency can reduce training time and
therefore the effort of the human teacher. We argue that the
performance driven query selection of standard Active Learning
can make the job of the human teacher difficult, resulting in
a decrease in training quality due to slowdowns or increased
error rates. We investigate this issue by proposing a learning
strategy that aims to minimize the user’s workload by taking
into account the flow of the questions. We compare this strategy
against a standard Active Learning strategy based on uncertainty
sampling and a third strategy being an hybrid of the two.
After studying in simulation the validity and the behavior of
these approaches, we conducted a user study where 26 subjects
interacted with a NAO robot embodying the presented strategies.
We reports results from both the robot’s performance and the
human teacher’s perspectives, observing how the hybrid strategy
represents a good compromise between learning performance and
user’s experienced workload. Based on the results, we provide
recommendations on the development of Active Robot Learning
strategies going beyond robot’s performance.

Index Terms—Active Learning; Human-Robot Interaction;
Interactive Machine Learning

I. INTRODUCTION

Service robots have the potential to become the definitive
helpers in our households, hospitals and schools. Yet many
challenges lie ahead and skill learning is one of them. As
pre-programming robots for every situation and environment
is unfeasible, service robots need to either generalize already
known skills or learn new ones after deployment. We are inter-
ested in developing methods for robots to learn by interacting
with their end users.

Interactive Machine Learning (IML) aims to close the
gap between robots and their human teachers [1]. Several
IML techniques have been proposed and used in robotics,
mainly characterized by how the user contributes to the robot’s
learning process. Together with other IML techniques like
Learning from Demonstration (LfD) [2] and Learning from
Critique (LfC) [3], [4], Active Learning (AL) [5] has attracted
the attention of the robotics community. AL approaches enable
the learning agent to query the user and decide where to
concentrate its learning attempts. The querying process allows
the active learner to choose what to learn, often by maximizing
the information gain of each query. This query efficiency of
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active learners reduces the number of labeled samples needed,
therefore reducing training time and costs.

Due to their interactive nature, AL approaches must take
into account the user in the loop as their performance partially
depends on the interaction. A common claim championed
by AL researchers is that through lowering the number of
samples required to learn, the user’s effort is accordingly
reduced [6]-[8]. However, to the best of our knowledge, this
claim has never been supported by analysis of the workload
of the human teacher. Research in Human-Robot Interaction
(HRI) has however observed how people can find the questions
posed by an active learner difficult to answer with respect to
other available type of questions or with respect to the current
context [9]-[13]. This difficulty can result in slower answering
of the questions, distraction or errors in the training.

We want to challenge the idea that the sample efficiency of
AL implies a reduced effort for the user acting as a teacher.
To investigate this aspect, we study an information gathering
problem where a robot has to learn attributes of certain entities
by making queries to its user. We provide the learner with
information about categories grouping the entities. This allows
the learner to assume that entities in the same category are
more likely to share the same value for an attribute. We
tackle this learning problem with uncertainty sampling [14],
an AL strategy that selects the most uncertain query based
on the current model. To maximize the information gain,
this strategy aims to make queries about entities that are
as distant as possible from each other, given the categories.
This technique acts as a strong baseline for our analysis. We
hypothesize that the continuous context switching caused by
these efficient queries can increase the workload of the human
teachers, making them reply slower and be more prone to
errors, consequently hindering the training.

We propose a learning strategy that takes into account the
flow of its questions, i.e. the order in which the questions are
asked. Informed by cognitive models of memory retrieval [15],
our strategy builds on the concept that memory chunks require
less mental effort to be retrieved if related chunks were
recently recalled. The proposed strategy therefore minimizes
the distance between consequent queries in order to reduce
the memory effort required by the user to answer them.
This strategy prefers queries targeting entities that are related
to each other, minimizing the mental effort at the cost of
less information gain. To further study this trade-off between
information gain and user’s effort, we propose a third strategy
that is an hybrid of the previous two and aims to maximize the
information gain of queries while keeping the context changes
as small as possible.

We compare the aforementioned three learning strategies



and analyze them in simulation to assess their validity. We
then run a user study, where 26 subjects interacted with a
NAO robot, embodying the three AL strategies. In addition to
performance measures like error rates, response times of the
users and model quality, we also measure the workload of the
participants through the NASA Task Load Index (TLX) [16]
and collect subjective feedback. We observed how the flow
of questions of the proposed strategies is positively perceived
by the participants with respect to the standard performance-
driven strategy. Results show how the perceived learning
performance of the robot non-trivially influences the workload
and the performance of the teacher, with the hybrid strategy
exhibiting a favorable trade-off between learning performance
and teacher workload. We discuss these results in the light of
providing recommendations for the development of AL robots
considering not only their own performance but also the human
teacher’s side of the interaction.

II. RELATED WORK

Active Learning is a machine learning paradigm that allows
the learning agent to choose the samples used for its train-
ing [5], [17]-[19]. While passive supervised strategies rely
on labeled datasets, AL strategies depend on a user (often
referred as oracle, annotator or teacher) to obtain labels for
the chosen unlabeled samples. If the AL agent can select
informative queries, models can be learned faster (i.e. with
less labeled samples) than with passive strategies. This is
particularly beneficial for problems where unlabeled samples
are plenty but the labeling costs are high.

Given its sample efficiency and the interactive nature of the
learning process, AL has been used for several applications
in robotics and HRI. Hayes and Scassellati [20] enabled a
robot to ask questions during the execution of a task, in order
to obtain information about the feasibility of the next step.
Similarly, Racca and Kyrki [12] proposed an AL technique for
learning task models by combining LfD and queries expressed
in natural language. Sadigh et al. [21] presented an application
of AL in a Inverse Reinforcement Learning (IRL) scenario,
where an autonomous car learned from users their preferred
driving style by posing comparison queries. Their work was
expanded in [22], where the utilized queries were enriched
with features in order to better estimate the user’s preferences.
Bullard et al. [23] also used different types of queries and
proposed a method to choose between them in order to
effectively use the budget of an AL agent.

Another line of research looks instead at the nature of the
interaction with AL robots. Aspects like the nature of robot’s
queries [10] and of the query selection mechanism [12], [24],
and their impact on the quality of user’s answers [25], [26]
have been studied. Also the balance of control between learner
and teacher during the interaction [9], the effect of queries’
timing [27] and the transparency of the learning process [28]
have been investigated. Cakmak et al. presented in [9] a
detailed analysis of the interaction between non-expert users
and an AL robot, proposing design guidelines regarding the
interaction.

Work done in this area [9]-[13] observed how AL strategies
could be perceived as difficult by the user due to their search
for information gain that represents their strongest advantage.
Few works have directly investigated this issue, mainly outside
robotics. Culotta and McCallum [7] proposed an AL method
that reduces both the number of samples and the difficulty
of labeling those samples for the annotator. However, the
query difficulty measure was engineered for a form filling
scenario and the method was only tested in simulation. A
similar technique was proposed in [29] for image annotation.
Although their technique modeled the difficulty of annotating
an image from real users, they did not study the impact of their
technique with a user study. Bestick et al. [13] proposed an
AL strategy that considers the ergonomic of human grasping
as costs for a robot learning to perform handovers. Finally,
Baldridge and Palmer [30] showed, in a language annotation
scenario, how the best AL strategy can vary with the level
of expertize of the annotators. However, their strategy did not
directly take into account these annotators’ preferences.

Building on these results, we further investigate this issue
by considering an information gathering problem where the
order of the queries can be manipulated by the learner to
ease the human teacher’s job. We study three different AL
strategies that exhibit different behaviors regarding their flow
of questions, together with different levels of performance.
With a user study, we study the nature of the interaction, going
beyond the learning performance to evaluate the users’ effort,
their teaching performance and preferences regarding different
strategies.

III. ACTIVE LEARNING USING CATEGORIES

In order to investigate different AL strategies and their
effects, we chose an information gathering problem. In this
section we first present the task at hand and how it can be
modeled and learned online by asking questions. Second, we
present three AL strategies, with three different goals in mind.

A. Incremental learning through categorical information

A learning agent has to learn the value of a certain attribute
a for a set £ of entities. For example, a robot could learn the
preferred location in your house (attribute) for different items
(entities). The agent can actively gather information about a
entity-attribute pair (e, a) by making a query g, , to the user.
With no additional information about the entities, the learner
needs to make all possible queries g, 4, Ve € £ to learn about
the attribute value of all entities.

We provide the learning agent a set of categories C, char-
acterizing the entities £. For each entity in £ and category in
C, we define w, . as the relevance of category c for entity e.
Following from the previous example, the robot could know
that items can be grouped by the function they accomplish.
The learner can then make the assumption that entities in the
same category are more likely to share the same attribute
value. Following this intra-category consistency assumption,



we model the probability of attribute a given a category ¢ € C
as

p(a, = $|C) ~ fc,a('rlac,a), (D

where f. o (z|6c,) is a distribution suiting the nature of a.

As we want the agent to learn in an interactive fashion,
we need a model that can be incrementally updated after each
query g. . We therefore adopt a Bayesian approach with priors
p(0c,q) over p(a = x|c). These priors can be initialized as
uninformative at the beginning of training or encode available
prior knowledge. After each query g q, the user’s answer 7
gives the learner not only the value of a for entity e, but also a
way to compute the posterior distribution p(6. 4|ge,q,7) Over
the categories. Essentially, the query-answer pair acts as an
observation for p(a = r|c), weighted by the relevance we .
Once computed, the posterior becomes the new prior and the
online training can continue.

Following the intra-category consistency assumption, the
learner can make predictions over the value of attribute a for
entity e through the categories C. The learner can estimate the
probability p(a = z|e) as

P(a = 1‘|€) ~ fe,a(x) = Z IDe,cfc,a(xWC,a)a )

ceC

where f. () is a weighted mixture of f.,(z) and W, =
We,c/ D, We,c are the normalized relevances.

This ability to make predictions allows the learner to
evaluate the informativeness of a query ¢. . If the learner
can reliably estimate the answer r of a query g., with
Eq. 2, it should prefer other more informative queries, where
the answer is uncertain. This prepares the ground for AL
techniques.

Our learning scenario: To evaluate our method, we de-
signed a task where a robot has to learn about animals and their
attributes by asking questions to a user. We use the Animal
with Attributes 2 (AwA2) dataset [31]. Used in Attribute
Based Classification research [32]-[34], the dataset consists
of images of 50 classes representing different mammals. Each
class is described by 85 semantic attributes, based on the
work of Osherson et al. [35] who collected the judgments of
human subjects on the relative strength of association between
attributes and mammals. In our scenario, we want the agent
to learn these class-attribute relations by asking questions to
the user (classes in AwWA?2 are our entities). We therefore use
the dataset as a ground truth for these relations.

AwA2 does however not provide the categorical information
we need. Similar to [33], [36], we obtain this information by
exploiting the hierarchical representation of WordNet, a lexical
database of English [37]. We use the super-subordinate rela-
tions embedded in WordNet to extract significant categories
for the AwA2 entities and build a tree where entities are the
leaves and categories are the non terminal nodes. Algorithm 1
summarizes the tree building process, starting from the Entity
set £ and a desired root of the tree. On the Entity-Category
tree 7, we compute the relevance scores wc . as

We,e = exp(—vyd(c, €)), 3)

Algorithm 1 Build Entity-Category tree

Input: Entity set £, Root of the tree R, WordNet
Output: Entity-Category tree 7, Category set C

1: Initialized tree 7 with root in R

2. for all entities e € E do

3. # find WordNet hypernym path leading from e to R

4 p <+ {}; w + parent node of e

5. while w # R do
6: Append w to p
7
8

w ¢ parent node of w
end while
9. AddptoT
10: end for
11: Prune trivial nodes from 7 (nodes with a single child)
12: C < all non-terminal nodes of 7

where d(c,e) is a distance metric defined as the number of
edges between nodes e and ¢ in 7 and + is a scale parameter.

We now adapt the previously introduced model to this task.
In the following, we will concentrate on learning a single
attribute a at a time. We therefore drop the subscript a to
simplify the notation.

In AwA?2 the attributes are boolean: an entity either has or
has not a certain attribute. We hence model the probabilities
p(a = x|c) as Bernoulli distributions Ber(z|6..). Consequently,
we use Beta distributions Beta(6.|a., 8.) as the conjugate
prior over the Bernoulli distributions. After each query g,
and relative answer r, we update the posterior distribution

p(0c|ge,7) as

p(ac‘Qea T) X p(90|a07 Bc)p(qev ’I"|90) =

[ Beta(f|ac + We,e, Be)
| Beta(fc| o, Be + We,e)

if r = yes 4)
if r =no

i.e. each category-attribute distribution is updated with the
evidence that queried entity e has or has not the attribute a,
weighted with the entity-category relevance we c.

Algorithm 2 details the learning process. During the inter-
action, the agent can ask questions from a pool Q built from
the entity set £ and an attribute a. Examples of queries are
“Do giraffes have patches?” and “Are rhinos strong?”. As
long as the user is willing to answer them, the AL agent can
select a new query ¢* based on the strategies explained in the
next section, make the query, receive an answer and integrate
the answer in the model.

B. Query Selection Strategies

To learn the model presented in the previous section, a
learning agent could ask questions targeting random entities
and update the model with the obtained answers. To evaluate
the performance of the agent, we can stop the learner at any
time during the training (i.e. after any number of questions)
and evaluate its predictions on the unseen entities.

However, making predictions through Eq. 2 allows the
agent to estimate which queries are more informative than
others. This is where AL comes into play: the learner can



Algorithm 2 Attribute Active Learning

Input: Entity-Category tree 7, Entity set £, Attribute a
Output: Updated Category priors p(f.), (e, a) pairs
1. Q < create query pool from Entity set £ and a
2. while user wants to answer queries and Q # {&} do
3. for all questions g € Q do
4 Sq < compute query score [see Section III-B]
5. end for
6 ¢" = argmax, S,
7. r* < make selected query ¢* and wait for answer
8:  update model with * [see Eq. 4]
9:  remove ¢* from Q

10: end while

ask the questions in a certain order so that a score is
maximized. In particular, our is a case of instance-based AL,
where the queries are the instances to be selected from the
query pool [10]. Commonly in classic AL, the score to be
maximized is related to the informativeness of the questions:
more informative questions bring more information and should
be asked earlier in order to speed up the training [19].

We study three AL strategies. First, we propose a Classic
(C) AL strategy aiming to maximize the information gain of
each query based on the current model. For this strategy we use
an uncertainty sampling technique [14] that selects the query
based on the entropy of the current prediction, by computing

sq.c = H(fe(x)), (5)

where f.(z) = Ber(z]0 = Y e We,ebe) is an approximation
of the full Bernoulli Mixture, as the entropy of a Bernoulli
Mixture cannot be computed in close form. The entropy of a
Bernoulli distribution ranges from 0 to 1, the closer to 1 the
more uncertain. This score makes the learner select the query
that is most uncertain about, given the current model.

As we want to study how non-performance driven AL
affects the user during the interaction, we propose a Memory
Effort strategy (M), inspired by the ACT-R model of declara-
tive memory [15]. We use the concept of associative strength
between memory chunks, saying that chunks of memory that
are frequently associated with recently retrieved chunks have
higher activation and require less effort to be retrieved [15],
[38], [39]. Following this concept, strategy M maximizes the
following score

SgM = exp(iéd(eap))’ (6)

where d(e, p) is the distance (used in Eq. 3) between the entity
e target of query ¢ and the entity p target of the previous
query and 0 being a scale parameter similar to -y. The score
represents the similarity of two entities based on the tree 7.
These strategies produce two completely different flows of
queries. Fig. 1 shows a representative flow for each strategy.
A learner using strategy C targets entities in the tree 7 as far
from each other as possible to obtain the most information gain
from them. A learner using M instead groups its queries using
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Fig. 1: Part of the Entity-Category tree 7 and representative
query flow for each learning strategy.

the structure of 7 to reduce the memory effort of the user.
Notice how strategy M is not optimal under the AL point of
view, trading information gain by asking about closely related
entities.

Finally, we present an Hybrid strategy (H), that is a com-
bination of the C and the M strategies. The score to be
maximized is defined as

S¢H = $5q,c + (1 = @)sqm, 7

where parameter ¢ € [0, 1] controls the trade-off between the
other two strategies.

C. Simulation Experiments

We evaluated the proposed model and strategies in simu-
lation.! We simulated the learning of all 85 attributes for the
50 entities of the AwA2 dataset for each learning strategy.
In addition, we simulated a passive learner P as a baseline.
Learner P can ask questions but does not use our category
model and therefore cannot make predictions. Therefore, for
learner P the order in which the questions are posed does not
matter and they can be asked at random.

We constructed the Entity-Category tree 7 assuming the
root to be the WordNet node Mammal. Fig. 1 shows part of
T. We initialized the model of each learner with uninformative
priors for p(6.|a., B.). Parameters v and 0 were experimen-
tally set to 0.7. For learner H, we set ¢ to 0.8 in order to
obtain a specific behavior regarding the query flow. As shown
in Fig. 1, learner H would first target similar entities in a
category but then switch to a unrelated category in order to
gain more information.

Results: We analyzed the learning strategies under three
quality measures. First, we define the predictive power P(n)
of a learner as the number of unseen entities (i.e. entities not
yet queried) for which the attribute would have been correctly
predicted if the training was stopped after n questions. Notice
that the predictive power goes to zero when all questions have
been asked and there is nothing left to predict. Based on the

ICode available at github.com/MattiaRacca/TeacherAwareAL
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Fig. 2: Temporal evolution of the predictive power P(n) of the
three learning strategies relative to learner P acting as baseline,
averaged over the 85 attributes of AwWA?2.

predictive power, we define the cumulative predictive power
P as the sum of P(n) for a complete learning session, i.e.

€]

P = Z P(n). 8)

Third, we define the cumulative query similarity S as the sum
of the similarities between each query and the previous one
(following Eq. 6) throughout a training session.

Fig. 2 shows the temporal evolution of the predictive power
P(n) during the training for each learner. We used learner P
as baseline, allowing it to predict based on a coin toss,
i.e. if, after n questions, there are |£| — n unseen entities,
learner P predicts on average half of them correctly. As
expected, learner C performs better than M and H, being able
on average to predict correctly the attributes of 32 unseen
entities after just 5 queries, 10 more than learner P’s random
chance. On the other hand, learner M barely performs better
then the passive baseline. Learner H achieves intermediate
results, stemming from its trade-off nature. Fig. 3 shows the
cumulative predictive power P separately for each attribute
in AwA2. Notice how it is possible for the learners’ P to be
negative, i.e. worse than P. This happens because the attributes
in AwA2 do not always follow the intra-category consistency
assumption. As an example, the attribute domestic conflicts
with this assumption, with e.g. dogs being in the same category
of wolves and foxes, and cats being closely related to lions
and tigers.

Finally, Table I shows the cumulative query similarity S
for each learner. Learner M achieves the highest S, closely
followed by learner H. Learner C has, together with the
passive learner, lower S scores. As expected, the S scores
reflect the nature of the different query selection strategies as
explained in Section III-B and depicted in Fig. 1.

IV. USER STUDY

In order to study how different AL strategies impact the
human teacher during the interaction with a learning robot, we

ran first a pilot study (6 participants) followed by a user study
with 26 participants. The participants interacted with Nemo, a
NAO robot embodying the proposed learning strategies (C, M
and H). The participants acted as teachers for the robot that
was learning 6 different attributes (2 attributes per strategy) for
the animals of the dataset. We investigated how the different
strategies impact the speed and the quality of the teaching of
the participants, recording the response times, error rates and
predictive power. Furthermore, we administered the NASA-
TLX questionnaire for measuring the participants’ workload
and a custom session questionnaire, targeting specific aspects
of the proposed strategies.

Experimental Setup: Experimental setup is shown in Fig. 4.
The NAO robot Nemo sits in front of the participant, close to
a keyboard and a screen. The learning software ran on an
external laptop, connected to the robot through ROS [40].
Nemo used animated text to speech to ask questions and
express other utterances. Additionally, the questions were
showed on the screen. The participants replied to the robot’s
question with Yes/No/I don’t know by pressing the arrow keys
on the keyboard. We opted for using a keyboard instead of
more sophisticated techniques to more reliably observe the
possibly small differences in response times.

Participants: Twenty-six participants (age M = 27, SD =
6, female 76%) were recruited in a university campus. Partic-
ipants had different education levels (9 high school diploma,
10 bachelor’s degrees, 6 master’s degrees and 1 PhD), with 2
participants having a computer science or engineering back-
ground and none having experience with NAO robots. The
participants were rewarded with a movie ticket as experiment
incentive, together with a debriefing pamphlet.

Conditions and Protocol: Each participant interacted with
all three learning strategies. The order of strategies was coun-
terbalanced and all orderings happened at least 4 times. We
used the same parameters (7, d, ¢ and uninformative priors)
used in the simulations. Experiments lasted on average 40
minutes.

Each participant was first introduced to Nemo and re-
ceived instructions for the task. A training session followed,
where Nemo asked the participant whether 14 animals were
mammals or not (none of them from AwA2), in order to
familiarize with the answering system and the robot’s voice.
Each participant then engaged in three learning sessions, each

TABLE I: Cumulative Query Similarity S (M + SD)

Learner P

1.48 £+ 0.32

Learner H

7.62 £+ 0.40

Learner M

8.24 £+ 0.04

Learner C

S 2.61 £0.66

TABLE II: Experiment design and selected attributes.

Session 1 Session 2 Session 3
Visual attributes Do Do __ Do _
(physical features) have paws? have horns? have claws?
Non-visual attributes Do ___ prefer Do ___ prefer Are ___
(diet) to eat fish? to eat meat? herbivore?
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Fig. 4: Experimental setup and example of question, as shown
on the screen.

interleaved by a session questionnaire and a NASA-TLX
questionnaire. Each session was separated in two: in each
half the robot asked questions about one of two attributes.
We chose 6 attributes from the 85 available in AwWA2 based
on the following constraints. First, we selected attributes that
have a ratio of yes and no answers over the dataset close to
0.5. We enforced this requirement to make the interaction less
tedious for the participants (e.g. with a ratio close to 0 or
1, the correct answer to almost all questions is either No or
Yes). Second, we selected attributes where the intra-category
consistency assumption is respected, avoiding attributes from
the first third of Fig. 3. Third, we wanted the attributes to be of
two types, so that each strategy has one attribute per type. We
therefore settled for the 3 visual attributes (physical features)
and the 3 non-visual attributes (diet) shown in Table II.

For each attribute in a session, the participants had 40
seconds to answer as many questions as possible. The budget
of 40 seconds was chosen after the pilot study, to allow the
participants to answer on average 15 questions - a number
of questions sufficient to observe differences in performance

and question flow of the three strategies. The participants
were instructed to balance the time constraint and the answer
quality, suggesting to reply I don’t know when needed. The
don’t know answer did not trigger any model update. At the
beginning of each attribute session, the robot would announce
the general question, e.g. “Do these animals have paws?”, and
then proceed to ask about the individual animals, e.g. “What
about animal_1?” and “How about animal_2?”. After asking
the question, the robot would wait for the answer and record as
response time the period between the end of the question and
the answer. When no time budget was left, the robot would
close the attribute session.

At the end of each session, Nemo evaluated its learning
performance by testing its predictions on the unseen entities
of the dataset. Nemo computed its current predictive power and
reported it in the form of a percentage, to allow the participants
to evaluate its performance.

Data Logged: After each learning session, participants filled
the NASA-TLX questionnaire. We used RAW NASA-TLX as
we were interested in its subscales and it is simpler to admin-
istrate [16]. The participants also filled a session questionnaire
with the following 3 Likert statements [1 completely disagree
- 7 completely agree] about a strategy:

1) The flow of Nemo’s questions felt natural

2) Nemo’s strategy made my job as teacher easy

3) Nemo’s strategy was good for its learning.
All these statements included a Why? Please explain optional
question. We additionally logged the queries chosen by each
strategy, the participants’ answers and response time. At the
end of the experiment, we collected participants’ preferences
and open-ended suggestions regarding the three learning strate-
gies.

A. Results

Tables III and IV summarize respectively the quantitative
data (response times, error rates and performance measures)



TABLE III: Quantitative results: mean over session, test statistics and p-values of comparison across strategies (Friedman) and

pair-wise comparison (Wilcoxon signed-rank).

C M H Friedman test Cvs M CvsH Hvs M
Response time (RT) [s] 0.85 0.90 0.73 x2(2)=3.87, p>.05 - - -
RT with visual attributes [s] 0.80 0.86 0.70 x2(2)=0.58, p>.05 - - -
RT with non-visual attributes [s] 0.91 0.96 0.78 X22)=1033p=01F 0 T=155.0, p>.05 T=71.0, p<.05* T=80.0, p<.05*
Error Rate 214% 195% 11.4% = x2(2)=9.00, p<.05*% T=10.0, p>.05 T=0.0, p<.05* T=1.0, p<.05*
Prediction Percentage 81.0% 51.4% 74.1% X2 (2)=48.86, p<.01** T=17.0, p<.01**  T=257.5, p<.01** T=95.5, p<.01%**
Prediction Percentage with oracles  89.4%  55.6%  77.5% | x2(2)=42.25, p<.0l**  T=0.0, p<.01** T=1.0, p<.01** T=6.0, p<.01**

TABLE IV: NASA-TLX: descriptive statistics (median), test statistics and p-values of comparison across strategies (Friedman)

and pair-wise comparisons (Wilcoxon signed-rank).

C M H Friedman test Cvs M Cvs H HvsM
Mental Demand 6.5 105 60 x2(2)=4.06, p>.05 - - -
Physical Demand 1.0 1.0 1.0 x2(2)=2.60, p>.05 - - -
Temporal Demand 6.0 5.5 50 x2(2)=1.26, p>.05 - - -
Performance 6.5 95 50  x2(2)=6.89, p<.05* T=100, p>.05 T=75.5, p>.05 | T=36.5, p<.01**
Effort 65 85 60 x2(2)=4.14, p>.05 - - -
Frustration 40 50 50  x2(2)=6.84, p<05* T=38.5, p>.05 T=69.5, p>.05 [PE=I0SWPROFE=

and the scores from the NASA-TLX questionnaire. We tested
for normality with the Shapiro-Wilcox test, rejecting the null-
hypothesis (p<.05) for each condition and score. We therefore
ran the non-parametric Friedman test for differences between
learners and Wilcoxon signed-rank test for pair-wise com-
parisons, with the participants as matching factor between
samples. The error rates were computed using the participants’
answers and the dataset as ground truth.

Our hypotheses entering the user study were that learner M
would make the participants reply (a) faster and (b) with
less errors compared to learner C, with learner H obtaining
intermediate results according to its hybrid nature. Much to
our surprise, the participants’ response time and error rates
for the different learners did not follow these expectations.

Learner H had the shortest response times, with an average
of 0.73 s against the 0.85 s and the 0.90 s of learners C and
M respectively, although statistically significant differences
were observed between groups only for the case of non-
visual attributes. The participants found the questions about
non-visual attributes more difficult to answer with respect to
the visual ones. The higher response times observed in the
non-visual case reflects this perceived difficulty and the more
marked differences observed between the strategies.

Regarding the error rates, participants replied incorrectly
to only 11.4% of the questions with learner H, which is
approximately half of the errors done by the participants while
interacting with learners C and M (21.4% and 19.5% respec-
tively). The participants’ error rate did not prevent learner C
from obtaining the highest prediction percentage, with an
average of 81.0% correct predictions. Learners H and M
follow with 74.1% and 51.4% correct predictions respectively.
Table III shows the prediction percentage in the hypothetical
case of infallible users. Although the learning performance
ranking does not change, we can see how learner C lost the
most performance (8.4%) due to the users’ errors.

B. Discussion

In order to interpret the quantitative results, we analyzed
the participants’ optional feedback together with the question-
naires’ scores shown in Table IV.

1) Flow of the questions: Although no difference was
observed on the Question Flow score (median of 6 for all
learners), 11 participants reported in the optional comments
how learner C seemed to ask random questions and how
this made the teaching stressful (4 subjects), unpredictable
(1 subject) and requiring more thinking (6 subjects). Such
comments suggest how the efficiency of learner C’s questions
may have made the users’ job as teachers more challenging,
causing the observed slower response time and the higher
error rate with respect to learner H. On the other hand,
learner M was spotted to make use of animal categories to
group its queries (12 subjects), making the flow seem natural
(8 subjects) and the questions easier to answer (8 subjects).

Regarding the Good for Teacher score, learner C was rated
slightly lower by the participants, with a median of 5.5 against
the 6 of learner M and H. Another recurrent comment about
learner M (related to the Good for Teacher score) was that
participants took advantage of its question flow to anticipate
the questions and their answers (“Thanks to the order of ques-
tions, a previous answer could be often applied again to the
following question” and “As similar questions followed each
other I didn’t need to think about every question separately.”).
This may have caused the participants to engage a sort of
autopilot or simply be bored by too similar questions, lowering
their attention during the task and causing the unexpectedly
high error rate observed. While our model concentrated on the
retrieval of information from declarative memory, the results
suggest that active learners taking into account also the user’s
attention may lead to more effective strategies.

Comments about the question flow of learner H followed a
pattern similar to learner M, with 13 participants praising the



easiness of teaching caused by the grouping of questions. Al-
though some participants commented about the anticipation of
future questions also for learner H, one participant commented
how the less monotonous query flow made him more attentive
(“The flow seemed natural but the slight variation of questions
kept me more awake”). This is a possible explanation for the
lowest error rate and the fastest response time observed with
learner H. A similar observation was made in [24], where a
robot allowed to ask off-topic questions was perceived as fun
and usable by the users.

2) Perceived learning performance: According to the Good
for Performance score, the participants were able to spot the
non-optimality of learner M with a median of 4 against the
6 and the 5.5 of learners C and H respectively. Most of the
participants saw the prediction score that Nemo was providing
them as their main tool to assess the robot’s performance.
However, some participants tried to explain the nature of
different strategies. The comments on the performance of
learner M were particularly harsh, especially if the participant
experienced other learners first (“Better to ask questions
randomly”, “Not the ideal strategy considering the time con-
straint”). Learner C was in general praised for its performance
(10 subjects), although some participants mentioned again
how this strategy might have caused them to make mistakes
(3 subjects). Interestingly, only one participant commented
about the non-optimality of learner H. We think that this lack
of negative comments was caused by learner H’s prediction
percentages, that were often close to C’s ones, especially if
compared to learner M.

We think that the perceived performance impacted not only
the error rates and the response times but also how the
participants perceived the workload imposed by the teaching
task. Learner M obtained the highest (i.e. worst) scores for
Mental Demand, Performance and Effort, although statistically
significant differences were observed only for the Performance
score compared to learner H. The same scores for learner C
were on average lower and in contrast with the comments
on the Question Flow score presented before. We think that
the good performance of C might have made the participants
pay less attention to the workload needed to achieve such
performance: in a sense, the participants saw their effort pay
off with learner C. Such thing did not happen for learner M
and some participants reported being frustrated by it (“As
a teacher, 1 felt frustrated by its choice of questions and
probably made mistakes due to that.”’) or willing to have
more control over its queries (“I would like to pick the
questions for the robot”). This observation supports the design
recommendation made in [9]: when designing active learners,
avoid uninformative queries as they could weaken the teacher’s
trust in the utility of answering them.

Even though our study design did not address the effects
of robot sociality on the interaction, the participants gave
interesting feedback on the matter. Regardless of the learning
strategy, participants reported feeling empathy for the robot,
wanting to teach Nemo the best they can due to its child-like
appearance and voice (8 subjects). Three participants even felt

responsible for the bad performances of learner M. Further
research is however needed to better understand how sociality
and embodiment impact the performance of learning robots
compared to other learning agents like e.g. computers, building
on more general results from [41], [42].

Finally, the influence of performance was also seen when
participants expressed their preference regarding the three
learning strategies at the end of the experiment. Twelve partici-
pants preferred learner C, backing their choice with comments
praising its learning efficiency. Learner H was chosen by 10
participants, with comments concentrating on the easiness of
teaching derived by the questions being grouped. Learner M
obtained only 4 preferences. This wide range of preferences
suggests how the best strategy is likely to be user-dependent,
based e.g. on their patience or their teaching skills as observed
also in [9], [12], [28], [43].

V. CONCLUSIONS

In this work, we challenged the common idea that links the
sample efficiency of active learners with the reduced effort
for the interacting user. We proposed a novel AL strategy
that takes into account the flow of the questions posed to the
user, in order to minimize the mental effort of the teacher. We
compared this strategy against a classic active learning strategy
and a third strategy being an hybrid of the two. We studied
with a user study how these different strategies affect the
human teacher in an human-robot interactive learning scenario.

Our results show how the exploratory nature of active
learners, although efficient, can cause problems for the human
teachers. We observed how the participants felt stressed and
more prone to errors when teaching to learner C and how this
raised both their error rates and response times. These issues
have been observed before [9], [11] and have their roots in the
often unrecognized or underestimated fact that human teachers
are not oracles and can make mistakes.

The results from the user study show also that performance
cannot be neglected or traded completely for the easiness of
the process, an observation in line with what is suggested
in [9]. Participants of our study realized how the strategy M
was grouping its questions and how this feature made their
job as a teacher easier. However, this strategy did not take
into account other interaction aspects such as the frustration of
the teachers or their concentration, and how this non-trivially
influenced their view of the learning system.

In our experiment, the limitations of both strategies were
overcome by the hybrid strategy H, which combined the
easiness of teaching of strategy M with the performance of
strategy C. However, the preferences of the participants were
far from being unanimous. As the best teaching strategy seems
to be a personal choice, we think that learning strategies that
can adjust their behavior based on the user’s feedback online
during the interaction have great potential. Another challenge
is to better understand the factors (such as the observed
frustration) that emerge when we consider teaching not only
as a maximal gathering of information but as a social process
between a learning robot and a human teacher.
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