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ABSTRACT
With the goal of having robots learn new skills after deployment,
we propose an active learning framework for modelling user pref-
erences about task execution. The proposed approach interactively
gathers information by asking questions expressed in natural lan-
guage. We study the validity and the learning performance of the
proposed approach and two of its variants compared to a pas-
sive learning strategy. We further investigate the human-robot-
interaction nature of the framework conducting a usability study
with 18 subjects. The results show that active strategies are appli-
cable for learning preferences in temporal tasks from non-expert
users. Furthermore, the results provide insights in the interaction
design of active learning robots.

CCS CONCEPTS
• Computing methodologies → Active learning settings; •
Human-centered computing→ Natural language interfaces; In-
teraction design; • Computer systems organization→ External
interfaces for robotics;
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1 INTRODUCTION
Service robots will be deployed in the future as general assistive
devices in dynamic human environments like households, schools
and hospitals. In order to be valuable and cost-effective assistants,
robots must allow a wide range of customization, especially re-
garding their skills. Pre-programming robots for every situation
is however hardly achievable. Robots need to gain new skills and
adapt their behaviour based on the requirements of the environ-
ment and the preferences of their users. Even if experts in their
domain (e.g. therapists and nurses in hospitals), end users might
lack the technical expertise required to shape the robot’s behaviours
and skills to satisfy their needs. Therefore, robots must be able to
learn from people in a natural and effective way.
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Most traditional machine learning techniques are not designed
to be used in an interactive manner. Interactive Machine Learning
(IML) approaches harmonize the presence of people in the learning
loop [13]. Several IML paradigms and techniques have been pro-
posed, mainly characterized by the way the human is contributing
to the learning. In Learning from Demonstration (LfD) [4, 5], users
provide exemplary executions of the desired skill to the learner. In
contrast, in Learning from Critique (LfC) the user provides feedback
on the robot’s learning attempts [3, 10, 22, 35].

Active Learning (AL) approaches enable the learner to query the
user (usually referred as oracle) to clarify the uncertain elements of
the desired skill [2, 15]. AL techniques aim to decrease training time
by leveraging the oracle’s presence while maintaining the learning
performances of passive demonstration-based approaches. AL low-
ers also the teacher’s requirements compared to LfD approaches:
users are not expected to always provide informative demonstra-
tions [14, 31] but to reply to the learner’s questions targeting the
unclear elements.

Although interactive robots can outperform passive ones in both
performance and quality of the interaction, a careful design of
the Human-Robot interaction (HRI) is needed. Aspects like the
transparency of the robot learning process [11, 33], the ability of
the user to be a good teacher [9], the timing of the queries or
the balance in control over the interaction [7] must be taken into
account. Furthermore, efficient ways to mediate between the robot’s
internal skill representation and the user need to be crafted.

We are interested in studying whether interactive robots can
learn complex skills from non-expert users via AL. In this paper, we
want robots to learn user preferences about task execution, that are,
preferences regarding the temporal order of actions used in a task.
The time-related nature of the learning goal creates new challenges,
compared to earlier studied classification and concept learning
problems [7–9]. First, questions1 asked by robots need to be in
context with the current phase of the demonstrated task. Questions
that are out of context might confuse the users and hinder their
perception of the robot’s capabilities and reliability. Second, queries
need to convey information about temporal order and frequencies
which are more complex concepts than membership to a group or
applicability of a label. Therefore, mediation between the natural
language queries and the robot’s internal representation of a task
is challenging.

We present a query-based AL framework capable of learning
user task preferences in an interactive way. While the user provides
demonstrations of a task, the robot can ask questions expressed in
natural language regarding the observed steps. A template-based
query design allows the robot to learn a probabilistic model of
the user’s preferences whilst being understandable by non-expert

1Questions and queries are used as synonyms in this paper.
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Figure 1: Experimental setup and example of a query, as
shown in the touchscreen GUI.

users and in context with respect to the current demonstration.
We show in simulations how the proposed framework and two of
its variants perform against a passive learning strategy. We then
investigate the usability and the HRI aspects of the approach with
a user study, where 18 subjects taught a fully autonomous robot
the recipes of their favourite sandwiches. We discuss the results in
the light of providing future directions for applying more complex
AL strategies in robotics.

2 RELATEDWORK
In its most traditional definition, Active Learning is a type of semi-
supervised learning [2, 15, 34, 36]. While supervised learning strate-
gies constrain the training to a labelled dataset, AL strategies allow
the learning agent to interrogate an oracle about unlabelled sam-
ples (synthesized by the learner or selected from a pool/stream). If
informative samples are selected to be labelled (e.g. by choosing
samples that maximize the information gain or minimize the pre-
dictive uncertainty of the trained model), AL can produce better
models faster.

AL’s most natural application is the solution of classification
problems, with several applications in computer vision [20, 21], text
analysis [28] and robotics [7, 16, 17]. Efforts to solve more com-
plex problems like task modelling or policy learning with AL have
been done, especially in combination with other IML approaches
[12, 18, 24, 35]. Lopes et al. [27] showed how Markov Decision
Processes, a popular choice for task modelling, can be learned from
ambiguous user feedback with Inverse Reinforcement Learning.
They used an AL technique to speed up the shaping of the reward
function by requesting feedback on informative samples of the state
space. A similar approach was used to learn grounded relational
symbols in [24], where an AL strategy generates configurations of
objects that are physically achievable by the robotic agent, with
the goal of reducing the predictive uncertainty of the model. Hayes
and Scassellati [18] applied AL to discover constraints on Task Net-
works. They enabled the robot to pause the user executing a task
and query about the feasibility of the next step ("Can you do this

next?"). Although able to obtain useful models, these approaches
focus their attention on the learning performance rather than their
usability and the quality of the interaction, decreasing their value
for less experienced or less motivated users. In this paper, we aim
for an interactive learning approach which is effective under the
performance point of view yet usable by non-expert users.

When using AL approaches, previous work showed that peo-
ple can develop negative feelings about the role of label provider
and naturally appreciate participating more in the training process
[1, 38]. Richer interaction is, however, challenged by the differences
existing between the two agents involved in the learning. Queries
must convey the necessary information to enable the learning pro-
cess and, at the same time, be understandable by the users. As the
complexity of the learning task rises, the difficulty of mediating
between robot queries and user’s understanding of them increases
as well. Sadigh et al. [35] presented an example of how user-friendly
ways of learning are possible in complex problems. With the goal
of encoding user preferences into reward functions guiding the be-
haviour of autonomous cars, they used an AL comparison approach,
presenting informative pairs of synthesised driving trajectories to
the users and asking for the preferred one. She et al. [37] proposed
a method to teach robots new high-level actions through natural
language instructions, simplifying the addition of new skills. Hayes
and Shah [19] leveraged the power of natural language to provide
robots with ways of explaining their policies, simplifying their use
with human collaborators. Following these examples, we propose
a template-based query design, translating the robot’s learning
efforts in questions expressed in natural language.

Given the interactive nature of AL approaches, valuable research
examined the HRI aspects of active robots. Rosenthal et. al [33]
investigated how the information included in the robot’s questions
affects the quality of the user’s responses, showing that transparent
learners help users focus their teaching efforts. Chao et al. [11]
investigated the same issue in a concept learning task by tuning
the robot’s non-verbal behaviours to explain uncertainty about
the target concept. Cakmak et al. [7] proposed design guidelines
for AL robots by analysing the interaction between non-expert
users and robots working together. They studied aspects such as
robot transparency, the perceived learning performance and the
ease of teaching in the context of a concept learning task. Our
work builds on these results, presenting an AL approach using
questions expressed in natural language, targeting a more complex
learning problem, where the temporal nature of the task influences
the quality of the interaction and the query design. With a user
study, we investigate the usability of our method, comparing, when
possible, our results and observations with the ones in [7].

3 PROPOSED APPROACH
In this section, we first present the model chosen to encode the
user’s preferences. Second, we present our query-based learning
approach.

3.1 Task preference model
The goal of our learning approach is a model of the user preferences
regarding the execution of a task. To model the preferred actions
and their relative ordering, we choose Markov chains (MCs). In
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particular, we model the set of actions A available to the user in
a certain task as the states of a MC. MCs can be parametrized as
θ = {π ,T }, where π ∈ R |A | specifies the probabilities of starting
the task with each action and the transition matrix T ∈ R |A |× |A |
describes the probabilities of transition between actions, where
ti j = p (as = aj | as−1 = ai ) is the probability of performing action
aj at timestep s knowing that ai was performed in the previous
step.

Knowing their parameters, these models can be used to predict
user’s future actions based on previously observed ones2. Following
a LfD strategy, the parameters θ could be learned offline from a
batch of demonstrations, defining a demonstration D as a sequence
of actions {a1, . . . ,an } needed to complete the task.

To increase the interactivity of learning, we learn the MC in-
crementally, i.e. continuously during the demonstration, by using
a Dirichlet-multinomial model over θ [30, Chapter 3]. For each
row of the transition matrix T and for the vector π of the starting
probabilities, we use an |A|-dimensional Dirichlet prior distribution
Dir(θ |α ), with α being the model hyperparameters. Besides allow-
ing the incremental learning, the prior distributions over θ give
the possibility to an expert user to encode prior knowledge of the
task, derived e.g. from common sense or actual task constraints. To
compute the posterior distributions, empirical counts (i.e. number
of times aj succeeds ai and number of times the user starts with
ai ) computed from demonstrations are added to the prior hyperpa-
rameter values [30]. After the training, the estimated parameters θ
are obtained as the means of the posterior distributions.

This LfD strategy has, however, one limitation since it assumes
the user to be able to provide not only correct but also informative
demonstrations, i.e. covering all the specifications needed to define
the model [31]. We target this problem by allowing the robot to ask
questions about missing or uncertain details of the task, in addition
to observing the user actions.

3.2 Learning by asking questions
Given our modelling choice, we present our query-based learn-
ing approach, summarized in Algorithm 1. While a user is giving
demonstrations of a task, we enable the robot to learn the model
parameters θ passively from the user actions (as the LfD approach
presented in Section 3.1) and additionally by asking questions. The
robot uses an AL strategy to pick the best question to ask at each
timestep, given the knowledge encoded in the current model. With
the user’s answer, the robot then updates its representation. In this
section we present the three main components of our approach.
First, we present the template-based query design, forming the pool
of questions available for the robot. Second, we solve the problem
of integrating the information coming from the user back in the
learning loop. Finally, we show how our method can pick the most
informative questions with a Monte Carlo sampling technique.

3.2.1 Query design. The query design must satisfy conflicting
requirements: queries must provide information for the parameter
estimation effectively while being understandable by non-expert
users, therefore avoiding direct references to probabilities or the
2We assume user’s actions to be fully observable, either through the user explicitly
informing the robot about the current action (as in our experiments) or using reliable
sensors to detect them.

Algorithm 1 Proposed Active Learning approach
Input: Action stream {a1, . . . ,an }, Action set A
Output: User preference model MC

1: while user wants to provide demonstrations do
2: initialize a new demonstration D
3: while user performs action a and a , end action do
4: D ← attach action a to D and passively update model
5: q∗ ← select best question [see Algorithm 3]
6: r∗ ← ask the user question q∗ and wait for the answer
7: MC← update with answer r∗ [see Algorithm 2]
8: end while
9: end while

underlying learning process. Moreover, the temporal nature of the
learning task imposes constraints over the contextualisation of the
queries. Out of context questions might not only cause perplexity
on the user side, but also distraction from the current task step or
inability to reply correctly.

We propose a template based query design with two types of
queries: frequency queries (FQs) and disambiguation queries (DQs).
As the queries are meant to be used online, i.e. while the user is
demonstrating the task, their design takes into account the current
action as and the previous action as−1 performed.

FQs aim to obtain user’s ordering preferences about a pair of
actions {apre, apost}. To convey richer information with the FQs
and to avoid the explicit use of probability values, we define a set
of frequency adverbs F such as {never , sometimes,always}. FQs
follow the template

FQ: “After apre , do you freq apost ?”,

where apre and apost are actions and freq is a frequency adverb
from F . FQs expect a yes/no answer. We design two subtypes of
FQs: FQs about the past (PFQs) and FQs about the future (FFQs).
To ground the query in the current step of the demonstration, we
limit the choices of the boxed elements in the template (apre and
apost) to ones related to the current context as described in Table 1.
The frequency adverb freq can be chosen freely from F .

DQs aim to obtain information about the preferences of the user
write respect to a pair of actions {achoice1, achoice2} following a
third one {apre}. DQs follow the template

DQ: “After apre , do you prefer to achoice1 or achoice2 ?”.

DQs expect the user to reply with one of the following answers:
‘Either of these actions’, ‘achoice1’, ‘achoice2’, ‘Neither of these actions’.
Similarly to FQs, we propose two subtypes of DQs: DQs about the
past (PDQs),and DQs about the future (FDQs), restricting the choice
of the boxed elements as presented in Table 2.

Table 1: Frequency Queries (FQs) template

Type apre apost Pool size
PFQ as−1 (previous) as (current) |F |
FFQ as (current) any from {A∖ as } ( |A| − 1) × |F |
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Table 2: Disambiguation Queries (DQs) template

Type apre achoice1 achoice2 Pool size
PDQ as−1 as {A∖ as−1,as , } |A| − 2
FDQ as {A∖ as } {A∖ as , achoice1} ( |A| − 1) × ( |A| − 2)

FQs and DQs aim to estimate the transition matrix T . In order
to learn also the starting probabilities π , we additionally propose
the starting frequency queries (SFQs) and starting disambiguation
queries (SDQs), in the form

SFQ: “Do you freq start with as ?”
SDQ: “Do you prefer to start with as or achoice1 ?”

and producing, respectively, |F | and |A| − 1 possible queries. The
templates do not cover repeated actions (i.e. the same action twice
or more in a row) as the questions would be clumsy and difficult to
answer. The proposed queries form the query pool Q, from which
the learner will select the most informative query as explained in
Section 3.2.3.

3.2.2 Model update. As we use a Dirichlet-multinomial model
on the model parameters θ , we need a way to update the robot’s
knowledge, i.e. to compute the posterior distribution Dir(θ |q, r )
given the selected query q and the user’s reply r . First, we solve the
problem of connecting the probabilistic nature of the model and the
linguistic nature of the queries and their components. Second, we
show how to compute the posterior distribution with a sampling
technique.

Borrowing ideas from fuzzy theory [40] and psychology studies
on how people perceive frequency adverbs related to probabili-
ties [6, 26], we assign to each freq ∈ F a membership function
Mfreq (p): S1 → [0, 1] mapping the probability simplex S1 into the
frequency concept of freq. Figure 2e shows a possible choice of
membership functions for a set of 3 frequency adverbs. Events
with high probability will have high values of membership with
frequency adverbs such as always. Vice versa, events unlikely to
happen (low probability) will score low values of membership with
adverbs always and sometimes and high values of membership with
frequency adverbs related to rare events like never.

Similarly, we define, for each of the possible answers to the DQs,
a membership functionMd (p (a1),p (a2)): S2 → [0, 1] mapping the
pair-preference concepts into the probability simplex S2. Figure
2(a-d) presents a possible choice for the membership functionsMd.

The membership functionsMfreq andMd do not have to respect
strict constraints regarding their shape and mathematical formula-
tion. On one hand, this increases the generality of our approach:

Algorithm 2 Computation of the posterior distribution over θ
given the user answer r to query q
Input: q, r , Prior Dir(·|α ), N ,Mfreq orMd
Output: Posterior Dir(·|q, r )
1: S ← draw N samples from the prior distribution Dir(·|α )
2: W ← compute weights for S [see Equations 1,2]
3: Dir(·|q, r ) ← fit a new Dir with weighted samples S

given new query designs, it is enough to encode their concepts in
appropriate membership functions. On the other hand, the freedom
of choice makes the update of the model parameters, i.e. the com-
putation of the posterior distribution Dir(θ |q, r ), hardly achievable
in closed form.

To solve this problem, we adopt a sampling based approach,
summarized in Algorithm 2. First, we select the prior distribution
Dir(·|α ) based on the selected query q. If q is a SFQ or a SDQ, we
take the prior distribution over π , Dir(π |α ). For all other types of
query, we select the prior distribution over the row of T related to
apre, Dir(Tapre |α ). Second, we draw N samples from the selected
prior. For each sample s , we compute a weight ws , whose value
depends on the type of query q, the answer r and the membership
functions. For FQs,ws is computed as

ws (q, r ) =

{
Mfreq (s (apost)) if r = ‘yes’

1 −Mfreq (s (apost)) if r = ‘no’ (1)

where freq and apost are respectively the frequency adverb and the
action used in the query q. If q is a DQ, we computews as

ws (q, r ) = Mr (s (achoice1), s (achoice2)), (2)

whereMr is theMd membership function related to answer r while
achoice1 and achoice2 are the actions specified in the query q. The
membership functions act as filters on the samples S drawn from
the prior knowledge, assigning high weight to samples that agree
with the user’s answer r and low weight to samples in conflict
with it. Finally, the posterior distribution Dir(·|q, r ) is obtained by
fitting a newDirichlet distribution on the weighted samples S , using
a weighted version of the Expectation Maximization algorithm
presented in [29].

3.2.3 Query selection. With the query pool Q designed, the ac-
tive learner needs a way to select the most informative question to
ask in order to speed up the learning.We adapt the idea presented in
[34], which selects unlabelled samples to minimize future error rate
with a Monte Carlo sampling technique. Instead of unlabelled sam-
ples, we select a query q from Q and we integrate the user’s reply
r in the model. Algorithm 3 summarizes the selection procedure.

As a measure of performance, we use the entropy of the posterior
distributionsDir(θ |q, r ), i.e. the distribution of the model parameter
θ given the user’s answer r to query q. The entropy of a Dirichlet
distribution is always negative and decreases as the distribution
becomes more selective. To select which query to choose, we com-
pute the difference of entropy ∆Hq in our model before and after
each query q in the query pool Q. As the user’s reply r is unknown
at the time of the query choice, we evaluate the expected reduction
of entropy ∆Hq as

∆Hq =

post query

E
r
[H(Dir(·|q, r ))]−

pre query

H(Dir(·|α ))

=
∑
r
p (r |q)H(Dir(·|q, r )) − H(Dir(·|α )),

(3)

where Dir(·|α ) is the prior related to query q, Dir(·|q, r ) are the
posterior distributions (see Algorithm 2) and p (r |q) is the probabil-
ity of receiving answer r after raising query q. As the probabilities
p (r |q) are unknown a priori, we estimate them from the weights
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Figure 2: Memberships functions: disambiguation functionsMd (p (a1),p (a2)) (a-d) and frequency functionsMfreq (p) (e).

W of the samples S generated during the posterior computation as

p (r |q) =
∑N
i wi (q, r )

N
, (4)

with wi computed as in Equations 1 and 2. With ∆Hq computed
for each query q ∈ Q, we can select the best query q∗, i.e. the query
that is expected to reduce the entropy the most, as

q∗ = argmin
q

∆Hq . (5)

Once the user replies with answer r∗ to query q∗, the model
parameters are updated according to Algorithm 2. After the update,
the computed posterior distribution Dir(·|q∗, r∗) will be used as the
new prior for the rest of the learning.

4 SIMULATION EXPERIMENT
We first validated our approach under the learning performance
point of view with simulations. We designed a sandwich prepara-
tion task with a pool of 9 possible actions; 4 different preference
patterns were generated, by varying the required actions and the
their ordering, to simulate the preferences of 4 virtual users.

Three AL strategies were compared against a passive learner (P),
learning only from observing the task execution (LfD approach of
Section 3.1). The strategies evaluated were:
• Active Learner (A): the proposed AL strategy

Algorithm 3 Query selection
Input: User preference model MC, Query pool Q
Output: Best query q∗
1: for all q ∈ Q do
2: Dir(·|α ) ← select prior given query q [see Section 3.2.2]
3: Hprior ← compute entropy of Dir(·|α )
4: for all possible answers r to query q do
5: Dir(·|q, r ) ← compute posterior given q and r

[see Algorithm 2]
6: Hpost (r ) ← compute entropy of Dir(·|q, r )
7: end for
8: ∆Hq ← compute expected entropy reduction for query q

[see Equation 3]
9: end for
10: q∗ ← select best query given ∆H [see Equation 5]

• Random Learner (R): a variation of A, which selects the
question to be asked randomly (thus avoiding the query
selection presented in Algorithm 3)
• Threshold Learner (T): another variation of A, which avoids
to query the user if the expected entropy reduction ∆Hq∗ is
above a threshold value τ .

Learner Pwas used as a baseline. LearnerRwas studied to inves-
tigate whether selecting the best query really improves the learning
rate or the contextualization derived by the query design is enough
to guide the learning. Learner T was chosen to study a cautious
learner that queries the user only if worth the interruption caused
by the question. We experimentally set τ = −0.29, by analysing the
performance of learner A. We wanted learner T to avoid queries
that would reduce the model’s entropy by only 50% of the best
reduction achieved by learner A.

Each learner performed a training session for each virtual user.
Each session consisted of 20 demonstrations, following the scheme
in Figure 4. All AL strategies used the membership functions shown
in Figure 2 and number of Monte Carlo samples N = 105. The
membership functions’ shape was chosen and tuned after a few
exploratory trials and performance analysis on the simulation. The
hyperparameters α were all set to 1, acting as uninformative priors.

To evaluate the true capabilities of each strategy, a single ex-
pert user (one of the authors) answered the questions based on
the ground truth user preferences. Ground truth models were ob-
tained by generating 200 demonstrations for each of the 4 simulated
preference schemes and training a passive learner with them.

4.1 Results
To compare the learning performances, we compute the KL diver-
gence [25] over the parameters θ between the ground truth models
and the models obtained by the 4 learning strategies. Figure 3 shows
the KL divergence at the end of each demonstration, grouped per
strategy and averaged over the 4 preference schemes. As expected,
learner A and T improved their models faster than learner P and R.
After only 5 demonstrations, learner A’s and T’s models were on
average comparable to learner P’s model trained with 12 demon-
strations. Interestingly, learnerR produced the worst models. These
results show that asking random questions not only slows down
the training but also hinders the quality of the model. After 10
demonstrations, learner A’s performance stabilized as the same
set of questions was repeated without consistent improvements in
the model. Learner T obtained slightly less accurate models than
learner A but also asked 59% fewer questions during the first 10
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Figure 3: KL divergence on MC parameters θ between the
ground truth model and the models obtained with the 4
learning strategies, averaged over 4 training sessions (1 stan-
dard deviation highlighted by the shaded area).

demonstrations and 96% fewer questions in the last 10. Computa-
tions required by learners A and T to select the best query among
72 queries took on average around 4.2± 0.2 seconds3. These results
show that the idea of a cautious learner is a good trade-off; however
finding the threshold value τ is not trivial and depends on the com-
plexity of the taught task. Running the simulations showed how
learners A and T often selected series of questions of the same type
(e.g. FFQs with freq = never were favoured). This lack of variability
in the queries, caused by the minimization nature of the selection
process and highly influenced by the choice of parameters, might
frustrate or annoy the users and hinder the quality of the training.

5 USABILITY STUDY
To test the usability of the proposed approach, we conducted a
study where 18 subjects taught an interactive robot their favourite
sandwich recipes. As in the simulation experiment, users could
choose between 9 actions to build their sandwiches. A NAO robot
named Nemo was used as an interactive partner, embodying the
3 AL strategies presented in Section 4. Since previous work had
already compared passive versus active strategies [7], we concen-
trated our analysis on the 3 different flavours of AL.

Experimental setup and robot platform. Figure 1 presents the ex-
perimental setup. The NAO robot Nemo, sitting on a table where
participants were asked to show the recipes, was connected through
Robot Operating System (ROS) [32] to an external computer run-
ning the framework’s software. Nemo used speech synthesis to ask
questions and express other utterances. Additionally, Nemo was
programmed to look at the subject while asking questions and at the
workspace otherwise. To avoid perception errors in the detection of
the participants’ actions and answers to Nemo’s questions, subjects
were instructed to declare their performed actions and to answer
the questions with a GUI loaded on a touchscreen (connected via
ROS). To increase the ecological validity of the experiment, subjects
could use real food to prepare the sandwiches and were encouraged
to teach Nemo their favourite recipes. Nemo’s behaviour was fully
autonomous.
3Simulation (Matlab code) running on a laptop (Intel Core i7, 8 GB RAM).
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Figure 4: Structure of a learning session. Steps in the blue
boxes are performed by the robot. White boxes contain user
performed steps.

Conditions and Protocol. During the experiment, each subject
interacted with all 3 AL strategies. The order of the strategies was
varied and all possible orderings happened 3 times. The parameter
values (Mfreq, Md, τ , N and the prior-hyperparameters α ) were
identical to the simulation. A briefing phase introduced the par-
ticipants to the robot and the task. Each participant engaged in 3
learning sessions, interleaved by post-session questionnaires. Par-
ticipants were first asked to design the recipe to be taught to the
robot on a whiteboard, provided to help them remember the re-
quired steps. No limitations on the complexity of the recipes in
terms of number of actions needed or presence of optional steps
or multiple choices were enforced. The participants were only re-
quired to keep the recipe throughout a session and to provide at
least 4 demonstrations. This minimum number of demonstrations
was chosen as a trade-off to give time to learner T to differentiate
itself from A while avoiding long and tiring interactions. Exper-
iments lasted on average 45 minutes. Since subjects were free to
design the recipes and demonstrated them on average 5.24 times,
the learning performance could not be studied as in Section 4.1.

Figure 4 shows the structure of a learning session4. First, the
user starts a new demonstration by acting on the touchscreen GUI.
After each action performed by the user, the robot asked a question
q∗ (visualized also on the GUI), waited for the user’s answer r∗
and then updated its model. After each answer, Nemo provided
two kinds of feedback utterances based on the user’s answer r∗.
If the answer was the expected one, i.e. r∗ = argmaxr p (r |q∗), the
robot used sentences like "I knew it!", "Okay!", "I was expecting that".
Otherwise, the robot would reply with surprised utterances like "Oh
really?", "Good to know", "I was not expecting this". In the learner T’s
case, when no question was needed, the robot said either "I don’t
have questions on this step, please continue" or "This passage is clear,
please continue". To allow the subjects to express incomprehension
towards Nemo’s questions, we added an extra answer "I don’t know",
triggering excuses from the robot ("I’m sorry that my question was
not clear") and no model update.

To avoid the lack of variability in the robot’s queries observed in
simulation, we forced all learners to alternate their choice between
the two main query types, FQs and DQs, producing a more natural
interaction. Finally, to ensure the grammatical correctness of FQs
with the freq = never, their wording was changed from "Do you
never do. . .?" to "You never do . . ., am I right?".

Participants. Eighteen participants (age M = 34, SD = 10.4, fe-
male 55%) were recruited in a university campus. Participants had

4Video recording of a learning session is available at vimeo.com/mattiaracca/hri18.

http://vimeo.com/mattiaracca/hri18
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diverse education levels (1 high school diploma, 5 bachelor’s de-
grees, 10 master’s degrees, 2 doctoral’s degrees), with 8 participants
having an engineering background and none having hands-on expe-
rience with NAO robots. At the end of the experiment, participants
were rewarded with a movie ticket (12 $ monetary value).

Questionnaires. After each learning session, subjects filled a post-
session questionnaire (inspired by [7]) with the following 1-7 Likert
scale questions:
• How well do you think Nemo learnt the recipe (in percent)?
(1 - 0%, 4 - 50%, 7 - 100%)
• While showing the recipe, was it clear to you if Nemo was
learning the recipe? (1 - Not clear at all, 7 - Extremely clear)
• Were Nemo’s questions bothering or distracting you from
your task? (1 - Extremely distracting, 7 - Not bothering at all)
• How easy was it to teach Nemo the recipe? (1 - Extremely
difficult, 7 - Extremely easy)
• How in context were Nemo’s questions with respect to your
recipe steps? (1 - Completely out of context, 7 - Extremely in
context)

The questions are presented here in the same order of their re-
spective scores presented in Table 3 and 4. Each question included
an optional comment section labelled "Why? Please explain". At
the end of all 3 learning sessions, a post-experiment questionnaire
collected preferences about the 3 strategies and open suggestions
about the interaction design. Subjects could navigate freely the web
questionnaire and modify their answers before submission. Besides
questionnaires, we logged Nemo’s questions, the demonstrations
provided by the users (actions declared with the touchscreen) and
the answers.

5.1 Results and Discussion
Scores from the questionnaires are summarized in Table 3. We
ran Shapiro-Wilcox tests for normality on the scores, rejecting
the null hypothesis for all scores and conditions (p<.05). Hence,
non-parametric tests were used to compare each condition on the
questionnaire scores (Kruskall-Wallis tests) and to pair-wise com-
pare the three conditions (Wilcoxon signed-rank tests). Table 4
reports test statistics and p−values.

Perceived performance and transparency of the learning process.
Subjects considered learner T as the best performing strategy. How-
ever, as we saw from the simulation experiment, learner T had
slightly worse performances with respect to A as asking fewer
questions (29% fewer questions thanA andR on average) decreased
the amount of information available for training. Interestingly, sub-
jects perceived the decreased number of queries as a sign of im-
proved learning. To support this thesis, subjects commented with
e.g. "Nemo had no questions at the end of the session" and "Nemo had
less and less questions over time". In contrast, the continuous flow
of questions of learners A and R was seen as sign of poor learning.
Subjects would comment with "Nemo kept asking same/similar ques-
tions" (A) and "He kept asking same or rather irrelevant questions
even after 5 demos" (R).

Subjects’ preference for fewer questions was also seen in the
comments under the second question. In particular, subjects experi-
encing first learner T had harsher comments against the learners A

and R (e.g. "I just don’t know if Nemo learned because he didn’t tell
me" or "Nemo did not say that it knows this phase so I was not so sure
about its learning progresses" respectively). Interestingly, very few
comments mentioned Nemo’s feedbacks, showing that them alone
are not enough to ensure transparency. One solution to increase
the transparency would be to allow users to query the learner to
verify its progresses, as suggested in [1, 23].

Ease of teaching and distracting factors. Subjects perceived teach-
ing learner T as easier compared to both the other strategies, while
no significant difference was seen between learners A and R. The
discriminant was again the number of questions asked. The com-
ments backing this observation ranged from "Too many questions"
to "Questions were good, there were just too many". This result does
not agree with what was observed in [7]. In their classification task,
the fully active strategy was considered the easiest because the
constant flow of questions guided the teacher. This suggest how
the best strategies might change given the task to solve.

The questions posed by Nemo were in general not seen as too
complicated and only 1.6% of them received the "I don’t know"
answer, with no difference between learners. However, learners A
and T often used questions expecting a negative reply from the
user. As an example, a FDQ expecting a "Neither of those" answer
is a powerful (ruling out two options at the same time) but at
the same time misleading query, according to some subjects (e.g.
"(Nemo) could have asked simpler questions, without using difficult
logic constructions"). Previous work already observed people’s bias
for teaching via positive feedback or examples [1, 39] and our
observations show how this bias might exists also towards negative
answers. A possible solution to this would be amore advanced query
selection, taking into account the user’s taste regarding questions.

Table 3: Questionnaire scores (1-7) for all AL learning strate-
gies: first quartile (Q1), median, third quartile (Q3). The plot
graphically compares the median ratings.

Questionnaire scores R A T

Performance (7=best) 4,5.5,6 5,6,6 6,7,7
Transparency (7=clearest) 3,5,6 5,5,6 6,6,7
Distraction (7=least distracting) 3,3.5,5 2,4,5 4,5,5
Ease of teaching (7=easiest) 2,4,5 2,4,5 5,5,6
Context (7=most in context) 3,5,6 4,6,6 5,6,6

1 2 3 4 5 6 7 Performance

Transparency

Distraction

Ease of teaching

Context

Learner R
Learner A
Learner T
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Table 4: Test statistics and p−values of multiple-comparison (Kruskall-Wallis) and pair-wise comparison (Wilcoxon signed-
rank) across all learning strategies on questionnaire scores.

Kruskall-Wallis Random vs Active Random vs Threshold Active vs Threshold
Performance H=10.39, p<.01** Z=-1.31, p>.05 Z=-2.65, p<.01** Z=-2.17, p<.05*
Transparency H=8.64, p<.05* Z=-1.63, p> .05 Z=-2.21, p<.05* Z=-1.55, p>.05
Distraction H=3.42, p>.05 Z=0.28, p>.05 Z=-1.76, p>.05 Z=-1.98, p<.05*
Ease of teaching H=10.22, p<.01** Z=-0.26, p>.05 Z=-2.97, p<.01** Z=-2.89, p<.01**
Context H=4.31, p>.05 Z=-1.49, p>.05 Z=-2.26, p<.05* Z=-0.74, p>.05

Finally, the use of the touchscreen by the subjects might have in-
fluenced the naturalness of the interaction. We believe that enabling
the robot to perceive user’s actions and answers would improve the
overall quality of the interaction equally for all the studied learning
strategies, thus not affecting our conclusions.

Contextuality of questions and their evolution over time. Although
questions used by learners A and T were on average considered
more in context than the one fromR, significant difference was only
seen between T and R. Subjects often commented R’s questions to
be random or irrelevant. Comments on learners A and T were more
positive and agreeing with each other: the queries were perceived
as sensible, informative and even clever.

From the comments, we could also see how some participants
tried to understand Nemo’s learning strategies. Subjects realized
how learners A and T improved the quality of their questions as
more demonstrations were given, commenting with "Questions were
more relevant after a couple of demonstrations". Surprisingly, also
learner R received comments of the same nature, for example "At
the beginning, (questions were) out of context, then it got better" or
"The final questions were quite accurate". Some fortunate random
selections of queries could explain these positive comments. The
query design could be another possible reason, mitigating with its
contextuality the random choices of learner R.

Another interesting point is the way different subjects looked at
repetitions in questions. Some subjects saw repeated questions as a
sign of poor learning (e.g. "(Nemo was) repeating the same questions
and not learning much"). Others, however, appreciated these queries,
commenting that "(Questions were) quite in context, Nemo appeared
to be confirming things" or "(Nemo) seemed to confirm things instead
of asking randomly". The exploratory nature of the query selection
mechanism was also not perceived equally. While some subjects
appreciated when Nemo was trying to rule out uncommon options,
others saw this as a loss of time and a sign of poor reasoning.
Finally, some subjects complained (with low values of context score)
about Nemo’s lack of common sense and basic knowledge about the
task (although this issue is solvable with adequate priors). These
contrasting opinions suggest that different strategies might suit
different users, based on their preferences and their skill as teachers,
as also suggested in [7].

Discussion. From the post-experiment questionnaire, seven sub-
jects expressed preference towards the current interaction design
that interleaves demonstrations and questions. However, an equal
number of subjects suggested an alternative approach, separating
the demonstrations of the task from a separate question phase. We

understand the appeal of this option, combining the benefits of AL
while avoiding the disliked constant flow of questions. However, we
believe that separating the two phases would make the questions
in the current design more complicated to answer, forcing the user
to remember what happened in the past.

The post-experiment questionnaire confirmed the users’ prefer-
ence toward learner T (12 subjects) observed in the post-session
questionnaire’s scores, followed by learner A preferred by 4 sub-
jects and learner R with 2 preferences. Subjects’ comments show
again preferences towards the reduced amount of questions and the
perceived faster learning rate of learner T, caused by its increased
transparency. Given these results, learning strategies that take into
account both performances and user’s experience like learner T
should be preferred. The threshold τ used by learnerTwas however
set manually in the current implementation. To use this approach at
its full potential, principled ways to set τ based on task features (e.g.
number of actions available) or on human factors (e.g. tiredness or
distraction of the user) need to be developed.

6 CONCLUSIONS
In this work, we proposed an active learning framework for mod-
elling user preferences in temporal tasks through questions ex-
pressed in natural language. The framework can pose the most
informative questions to learn efficiently and request the user’s
intervention only when beneficial. A user study showed that partic-
ipants valued the interactiveness of the active learning strategies,
confirming findings from previous research. In particular, robot
transparency played a pivotal role in the interaction, impacting
the perceived robot learning performance. We also observed how
non-expert users may value aspects such as understandability and
variability of questions more than their optimality. A limitation
of the proposed task model is that it cannot capture complex task
constraints and further work is needed to develop active learning
for more complex models like MDPs and Task Networks. Query
selection techniques taking into account not only the optimality
but also user preferences regarding questions show major potential
for improving interaction.
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